PSIC-Net: Pixel-Wise Segmentation and Image-Wise Classification Network for Surface Defects
2021-10
发表期刊MACHINES (IF:2.1[JCR-2023],2.2[5-Year])
EISSN2075-1702
卷号9期号:10
DOI10.3390/machines9100221
摘要Recent years have witnessed the widespread research of the surface defect detection technology based on machine vision, which has spawned various effective detection methods. In particular, the rise of deep learning has allowed the surface defect detection technology to develop further. However, these methods based on deep learning still have some drawbacks. For example, the size of the sample data is not large enough to support deep learning; the location and recognition of surface defects are not accurate enough; the real-time performance of segmentation and classification is not satisfactory. In the context, this paper proposes an end-to-end convolutional neural network model: the pixel-wise segmentation and image-wise classification network (PSIC-Net). With the innovative design of a three-stage network structure, improved loss function and a two-step training mode, PSIC-Net can accurately and quickly segment and classify surface defects with a small dataset of training data. This model was evaluated with three public datasets, and compared with the most advanced defect detection methods. All the performance metrics prove the effectiveness and advancement of PSIC-Net.

关键词surface defect detection pixel-wise segmentation image-wise classification convolutional neural network deep learning
URL查看原文
收录类别SCIE
语种英语
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic ; Engineering, Mechanical
WOS记录号WOS:000711523000001
出版者MDPI
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/128595
专题信息科学与技术学院_博士生
通讯作者Sun, Shengli
作者单位
1.Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China;
2.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China;
3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China;
4.Chinese Acad Sci, Key Lab Intelligent Infrared Percept, Shanghai 200083, Peoples R China
第一作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Lei, Linjian,Sun, Shengli,Zhang, Yue,et al. PSIC-Net: Pixel-Wise Segmentation and Image-Wise Classification Network for Surface Defects[J]. MACHINES,2021,9(10).
APA Lei, Linjian,Sun, Shengli,Zhang, Yue,Liu, Huikai,&Xu, Wenjun.(2021).PSIC-Net: Pixel-Wise Segmentation and Image-Wise Classification Network for Surface Defects.MACHINES,9(10).
MLA Lei, Linjian,et al."PSIC-Net: Pixel-Wise Segmentation and Image-Wise Classification Network for Surface Defects".MACHINES 9.10(2021).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lei, Linjian]的文章
[Sun, Shengli]的文章
[Zhang, Yue]的文章
百度学术
百度学术中相似的文章
[Lei, Linjian]的文章
[Sun, Shengli]的文章
[Zhang, Yue]的文章
必应学术
必应学术中相似的文章
[Lei, Linjian]的文章
[Sun, Shengli]的文章
[Zhang, Yue]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3390@machines9100221.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。