ShanghaiTech University Knowledge Management System
Weakly Supervised Volumetric Segmentation via Self-taught Shape Denoising Model | |
2021-09 | |
会议录名称 | IN MEDICAL IMAGING WITH DEEP LEARNING 2021 |
卷号 | 143 |
页码 | 268-285 |
发表状态 | 已发表 |
DOI | --- |
摘要 | Weakly supervised segmentation is an important problem in medical image analysis due to the high cost of pixelwise annotation. Prior methods, while often focusing on weak labels of 2D images, exploit few structural cues of volumetric medical images. To address this, we propose a novel weakly-supervised segmentation strategy capable of better capturing 3D shape prior in both model prediction and learning. Our main idea is to extract a self-taught shape representation by leveraging weak labels, and then integrate this representation into segmentation prediction for shape refinement. To this end, we design a deep network consisting of a segmentation module and a shape denoising module, which are trained by an iterative learning strategy. Moreover, we introduce a weak annotation scheme with a hybrid label design for volumetric images, which improves model learning without increasing the overall annotation cost. The empirical experiments show that our approach outperforms existing SOTA strategies on three organ segmentation benchmarks with distinctive shape properties. Notably, we can achieve strong performance with even 10% labeled slices, which is significantly superior to other methods. Our code is available at: https://github.com/Seolen/weak seg via shape model. © 2021 Q. He, S. Li & X. He. |
关键词 | Cost benefit analysis Image enhancement Image segmentation Iterative methods Medical imaging 3-D shape 3d shape prior De-noising Model learning Self-taught learning Shape priors Supervised segmentation Volumetric segmentations Weak labels Weakly supervised segmentation |
会议名称 | 4th Conference on Medical Imaging with Deep Learning, MIDL 2021 |
会议地点 | Virtual, Online, Germany |
会议日期 | July 7, 2021 - July 9, 2021 |
收录类别 | SCI ; EI |
语种 | 英语 |
出版者 | ML Research Press |
EI入藏号 | 20232614305227 |
EI主题词 | Learning systems |
EISSN | 2640-3498 |
EI分类号 | 461.1 Biomedical Engineering ; 746 Imaging Techniques ; 911 Cost and Value Engineering ; Industrial Economics ; 912.2 Management ; 921.6 Numerical Methods |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/128385 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_硕士生 |
共同第一作者 | Li SL(李帅霖) |
通讯作者 | He XM(何旭明) |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University 2.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences 3.University of Chinese Academy of Sciences 4.Shanghai Engineering Research Center of Intelligent Vision and Imaging |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | He Q,Li SL,He XM. Weakly Supervised Volumetric Segmentation via Self-taught Shape Denoising Model[C]:ML Research Press,2021:268-285. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[He Q(贺倩)]的文章 |
[Li SL(李帅霖)]的文章 |
[He XM(何旭明)]的文章 |
百度学术 |
百度学术中相似的文章 |
[He Q(贺倩)]的文章 |
[Li SL(李帅霖)]的文章 |
[He XM(何旭明)]的文章 |
必应学术 |
必应学术中相似的文章 |
[He Q(贺倩)]的文章 |
[Li SL(李帅霖)]的文章 |
[He XM(何旭明)]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。