| |||||||
ShanghaiTech University Knowledge Management System
KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers | |
2021-07 | |
发表期刊 | BIOINFORMATICS (IF:4.4[JCR-2023],7.6[5-Year]) |
ISSN | 1367-4803 |
EISSN | 1460-2059 |
卷号 | 37页码:I418-I425 |
发表状态 | 已发表 |
DOI | 10.1093/bioinformatics/btab271 |
摘要 | Motivation: Synthetic lethality (SL) is a promising gold mine for the discovery of anti-cancer drug targets. Wet-lab screening of SL pairs is afflicted with high cost, batch-effect, and off-target problems. Current computational methods for SL prediction include gene knock-out simulation, knowledge-based data mining and machine learning methods. Most of the existing methods tend to assume that SL pairs are independent of each other, without taking into account the shared biological mechanisms underlying the SL pairs. Although several methods have incorporated genomic and proteomic data to aid SL prediction, these methods involve manual feature engineering that heavily relies on domain knowledge. Results: Here, we propose a novel graph neural network (GNN)-based model, named KG4SL, by incorporating knowledge graph (KG) message-passing into SL prediction. The KG was constructed using 11 kinds of entities including genes, compounds, diseases, biological processes and 24 kinds of relationships that could be pertinent to SL. The integration of KG can help harness the independence issue and circumvent manual feature engineering by conducting message-passing on the KG. Our model outperformed all the state-of-the-art baselines in area under the curve, area under precision-recall curve and F1. Extensive experiments, including the comparison of our model with an unsupervised TransE model, a vanilla graph convolutional network model, and their combination, demonstrated the significant impact of incorporating KG into GNN for SL prediction. |
URL | 查看原文 |
收录类别 | SCIE |
语种 | 英语 |
WOS研究方向 | Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics |
WOS类目 | Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability |
WOS记录号 | WOS:000697703700050 |
出版者 | OXFORD UNIV PRESS |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/128250 |
专题 | 信息科学与技术学院_公共教学平台_电子科学与技术实验教学中心 生命科学与技术学院_本科生 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_郑杰组 |
共同第一作者 | Xu, Fan |
通讯作者 | Wu, Min; Zheng, Jie |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China; 2.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China; 3.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China; 4.Nanyang Technol Univ, Joint NTU UBC Res Ctr Excellence Act Living Elder, Singapore 639798, Singapore; 5.ASTAR, Inst Infocomm Res, Singapore 138632, Singapore; 6.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai 201210, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Wang, Shike,Xu, Fan,Li, Yunyang,et al. KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers[J]. BIOINFORMATICS,2021,37:I418-I425. |
APA | Wang, Shike.,Xu, Fan.,Li, Yunyang.,Wang, Jie.,Zhang, Ke.,...&Zheng, Jie.(2021).KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers.BIOINFORMATICS,37,I418-I425. |
MLA | Wang, Shike,et al."KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers".BIOINFORMATICS 37(2021):I418-I425. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wang, Shike]的文章 |
[Xu, Fan]的文章 |
[Li, Yunyang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wang, Shike]的文章 |
[Xu, Fan]的文章 |
[Li, Yunyang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wang, Shike]的文章 |
[Xu, Fan]的文章 |
[Li, Yunyang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。