| |||||||
ShanghaiTech University Knowledge Management System
Velo-Predictor: an ensemble learning pipeline for RNA velocity prediction | |
2021-09-03 | |
发表期刊 | BMC BIOINFORMATICS (IF:2.9[JCR-2023],3.6[5-Year]) |
ISSN | 1471-2105 |
卷号 | 22期号:SUPPL 10 |
DOI | 10.1186/s12859-021-04330-1 |
摘要 | Background RNA velocity is a novel and powerful concept which enables the inference of dynamical cell state changes from seemingly static single-cell RNA sequencing (scRNA-seq) data. However, accurate estimation of RNA velocity is still a challenging problem, and the underlying kinetic mechanisms of transcriptional and splicing regulations are not fully clear. Moreover, scRNA-seq data tend to be sparse compared with possible cell states, and a given dataset of estimated RNA velocities needs imputation for some cell states not yet covered. Results We formulate RNA velocity prediction as a supervised learning problem of classification for the first time, where a cell state space is divided into equal-sized segments by directions as classes, and the estimated RNA velocity vectors are considered as ground truth. We propose Velo-Predictor, an ensemble learning pipeline for predicting RNA velocities from scRNA-seq data. We test different models on two real datasets, Velo-Predictor exhibits good performance, especially when XGBoost was used as the base predictor. Parameter analysis and visualization also show that the method is robust and able to make biologically meaningful predictions. Conclusion The accurate result shows that Velo-Predictor can effectively simplify the procedure by learning a predictive model from gene expression data, which could help to construct a continous landscape and give biologists an intuitive picture about the trend of cellular dynamics. |
关键词 | RNA velocity Single cell Ensemble learning Landscape |
URL | 查看原文 |
收录类别 | SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Mathematical & Computational Biology |
WOS类目 | Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Mathematical & Computational Biology |
WOS记录号 | WOS:000698117900001 |
出版者 | BMC |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/128241 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_郑杰组 |
通讯作者 | Zheng, Jie |
作者单位 | ShanghaiTech Univ, Sch Informat Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Wang, Xin,Zheng, Jie. Velo-Predictor: an ensemble learning pipeline for RNA velocity prediction[J]. BMC BIOINFORMATICS,2021,22(SUPPL 10). |
APA | Wang, Xin,&Zheng, Jie.(2021).Velo-Predictor: an ensemble learning pipeline for RNA velocity prediction.BMC BIOINFORMATICS,22(SUPPL 10). |
MLA | Wang, Xin,et al."Velo-Predictor: an ensemble learning pipeline for RNA velocity prediction".BMC BIOINFORMATICS 22.SUPPL 10(2021). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wang, Xin]的文章 |
[Zheng, Jie]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wang, Xin]的文章 |
[Zheng, Jie]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wang, Xin]的文章 |
[Zheng, Jie]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。