| |||||||
ShanghaiTech University Knowledge Management System
DRESIA: Deep Reinforcement Learning-Enabled Gray Box Approach for Large-Scale Dynamic Cyber-Twin System Simulation | |
2021-08-15 | |
发表期刊 | IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY (IF:5.7[JCR-2023],6.3[5-Year]) |
ISSN | 2644-1268 |
EISSN | 2644-1268 |
卷号 | 2页码:321-333 |
发表状态 | 已发表 |
DOI | 10.1109/OJCS.2021.3097540 |
摘要 | The massive data generated by large-scale dynamic systems makes its optimization facing a tough challenge. Traditional White Box-based methods directly model the internal operating mechanism of the system, so massive amounts of measured data need to be handled, which is costly and time-consuming. The poor interpretability of the Black Box-based methods makes it difficult to adapt to the dynamic environment. Thus we propose a novel Gray Box-based approach namely Deep Reinforcement Learning-enabled Constraint Set Inversion Algorithm (DRESIA), which establishes a quantitative model of the nonlinear interoperability effects of system internal states which simplifies the White Box's complex mechanism of reconstruction and prediction and retains the interpretability of the model, therefore improves the prediction efficiency of feasible region while also improving the generalization ability. It further improves the dynamic adaptability of the modeling environment, which provides a new performance balancing scheme for system modeling. Under the premise that the large-scale 5G Cyber-Twin system satisfies the given Quality of Service (QoS) requirements, we perform DRESIA to realize the efficient and dynamic optimal search of feasible region, the results show that the DRESIA reduces the computational cost, and balances the accuracy and robustness of the feasible region, which validate the effectiveness and superiority of Gray Box-based approach. |
关键词 | Graphics Image color analysis Magnetic separation Magnetization Magnetostatics Magnetic resonance imaging Tools Cyber-twin digital twin dynamic system white-box black-box gray-box fuzzy measure choquet integral deep reinforcement learning feasible region inversion massive MIMO |
URL | 查看原文 |
收录类别 | ESCI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Hardware & Architecture ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000692765100001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
原始文献类型 | Article |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/128154 |
专题 | 科道书院 信息科学与技术学院 创意与艺术学院 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 创意与艺术学院_特聘教授组_汪军组 |
作者单位 | 1.Shanghai Institute of Fog Computing Technology, School of Information Science and Technology, Shanghaitech University, Shanghai, China 2.Artificial Intelligence and Digital Art Lab, School of Creativity and Art, Shanghaitech University, Shanghai, China 3.Electrical Engineering Department, Tsinghua University, Beijing, China 4.College of Electronic Science and Technology, National University of Defense Technology, Changsha, Hunan, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhouyang Lin,Kai Li,Yang Yang,et al. DRESIA: Deep Reinforcement Learning-Enabled Gray Box Approach for Large-Scale Dynamic Cyber-Twin System Simulation[J]. IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY,2021,2:321-333. |
APA | Zhouyang Lin.,Kai Li.,Yang Yang.,Fanglei Sun.,Liantao Wu.,...&Yong Zuo.(2021).DRESIA: Deep Reinforcement Learning-Enabled Gray Box Approach for Large-Scale Dynamic Cyber-Twin System Simulation.IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY,2,321-333. |
MLA | Zhouyang Lin,et al."DRESIA: Deep Reinforcement Learning-Enabled Gray Box Approach for Large-Scale Dynamic Cyber-Twin System Simulation".IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 2(2021):321-333. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhouyang Lin]的文章 |
[Kai Li]的文章 |
[Yang Yang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhouyang Lin]的文章 |
[Kai Li]的文章 |
[Yang Yang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhouyang Lin]的文章 |
[Kai Li]的文章 |
[Yang Yang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。