消息
×
loading..
DRESIA: Deep Reinforcement Learning-Enabled Gray Box Approach for Large-Scale Dynamic Cyber-Twin System Simulation
2021-08-15
发表期刊IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY (IF:5.7[JCR-2023],6.3[5-Year])
ISSN2644-1268
EISSN2644-1268
卷号2页码:321-333
发表状态已发表
DOI10.1109/OJCS.2021.3097540
摘要

The massive data generated by large-scale dynamic systems makes its optimization facing a tough challenge. Traditional White Box-based methods directly model the internal operating mechanism of the system, so massive amounts of measured data need to be handled, which is costly and time-consuming. The poor interpretability of the Black Box-based methods makes it difficult to adapt to the dynamic environment. Thus we propose a novel Gray Box-based approach namely Deep Reinforcement Learning-enabled Constraint Set Inversion Algorithm (DRESIA), which establishes a quantitative model of the nonlinear interoperability effects of system internal states which simplifies the White Box's complex mechanism of reconstruction and prediction and retains the interpretability of the model, therefore improves the prediction efficiency of feasible region while also improving the generalization ability. It further improves the dynamic adaptability of the modeling environment, which provides a new performance balancing scheme for system modeling. Under the premise that the large-scale 5G Cyber-Twin system satisfies the given Quality of Service (QoS) requirements, we perform DRESIA to realize the efficient and dynamic optimal search of feasible region, the results show that the DRESIA reduces the computational cost, and balances the accuracy and robustness of the feasible region, which validate the effectiveness and superiority of Gray Box-based approach.

关键词Graphics Image color analysis Magnetic separation Magnetization Magnetostatics Magnetic resonance imaging Tools Cyber-twin digital twin dynamic system white-box black-box gray-box fuzzy measure choquet integral deep reinforcement learning feasible region inversion massive MIMO
URL查看原文
收录类别ESCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000692765100001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
原始文献类型Article
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/128154
专题科道书院
信息科学与技术学院
创意与艺术学院
信息科学与技术学院_PI研究组_周勇组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
创意与艺术学院_特聘教授组_汪军组
作者单位
1.Shanghai Institute of Fog Computing Technology, School of Information Science and Technology, Shanghaitech University, Shanghai, China
2.Artificial Intelligence and Digital Art Lab, School of Creativity and Art, Shanghaitech University, Shanghai, China
3.Electrical Engineering Department, Tsinghua University, Beijing, China
4.College of Electronic Science and Technology, National University of Defense Technology, Changsha, Hunan, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhouyang Lin,Kai Li,Yang Yang,et al. DRESIA: Deep Reinforcement Learning-Enabled Gray Box Approach for Large-Scale Dynamic Cyber-Twin System Simulation[J]. IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY,2021,2:321-333.
APA Zhouyang Lin.,Kai Li.,Yang Yang.,Fanglei Sun.,Liantao Wu.,...&Yong Zuo.(2021).DRESIA: Deep Reinforcement Learning-Enabled Gray Box Approach for Large-Scale Dynamic Cyber-Twin System Simulation.IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY,2,321-333.
MLA Zhouyang Lin,et al."DRESIA: Deep Reinforcement Learning-Enabled Gray Box Approach for Large-Scale Dynamic Cyber-Twin System Simulation".IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY 2(2021):321-333.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhouyang Lin]的文章
[Kai Li]的文章
[Yang Yang]的文章
百度学术
百度学术中相似的文章
[Zhouyang Lin]的文章
[Kai Li]的文章
[Yang Yang]的文章
必应学术
必应学术中相似的文章
[Zhouyang Lin]的文章
[Kai Li]的文章
[Yang Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。