消息
×
loading..
Advanced evasion attacks and mitigations on practical ML-based phishing website classifiers
2021-09
发表期刊INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS (IF:5.0[JCR-2023],5.9[5-Year])
ISSN0884-8173
EISSN1098-111X
卷号36期号:9页码:5210-5240
DOI10.1002/int.22510
摘要Machine learning (ML) based classifiers are vulnerable to evasion attacks, as shown by recent attacks. However, there is a lack of systematic study of evasion attacks on ML-based anti-phishing detection. In this study, we show that evasion attacks are not only effective on practical ML-based classifiers, but can also be efficiently launched without destructing the functionalities and appearance. For this purpose, we propose three mutation-based attacks, differing in the knowledge of the target classifier, addressing a key technical challenge: automatically crafting an adversarial sample from a known phishing website in a way that can mislead classifiers. To launch attacks in the white- and gray-box scenarios, we also propose a sample-based collision attack to gain the knowledge of the target classifier. We demonstrate the efficacy of our evasion attacks on the state-of-the-art, Google's phishing page filter, achieved 100% attack success rate in less than one second per website. Moreover, the transferability attack on BitDefender's industrial phishing page classifier, TrafficLight, achieved up to 81.25% attack success rate. We further propose a similarity-based method to mitigate such evasion attacks, Pelican, which compares the similarity of an unknown website with recently detected phishing websites. We demonstrate that Pelican can effectively detect evasion attacks, hence could be integrated into ML-based classifiers. We also highlight two strategies of classification rule selection to enhance the robustness of classifiers. Our findings contribute to design more robust phishing website classifiers in practice.
关键词adversarial attacks adversarial sample detection machine learning mutation phishing website
URL查看原文
收录类别SCIE ; EI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000661142100001
出版者WILEY
原始文献类型Article; Early Access
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/127570
专题信息科学与技术学院_PI研究组_宋富组
通讯作者Song, Fu
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, 393 Huaxia Middle Rd, Shanghai 201210, Pudong, Peoples R China;
2.Tianjin Univ, Sch Cybersecur, Coll Intelligence & Comp, Tianjin, Peoples R China;
3.Nankai Univ, Coll Cyber Sci, Tianjin, Peoples R China;
4.Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Song, Fu,Lei, Yusi,Chen, Sen,et al. Advanced evasion attacks and mitigations on practical ML-based phishing website classifiers[J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS,2021,36(9):5210-5240.
APA Song, Fu,Lei, Yusi,Chen, Sen,Fan, Lingling,&Liu, Yang.(2021).Advanced evasion attacks and mitigations on practical ML-based phishing website classifiers.INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS,36(9),5210-5240.
MLA Song, Fu,et al."Advanced evasion attacks and mitigations on practical ML-based phishing website classifiers".INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 36.9(2021):5210-5240.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Song, Fu]的文章
[Lei, Yusi]的文章
[Chen, Sen]的文章
百度学术
百度学术中相似的文章
[Song, Fu]的文章
[Lei, Yusi]的文章
[Chen, Sen]的文章
必应学术
必应学术中相似的文章
[Song, Fu]的文章
[Lei, Yusi]的文章
[Chen, Sen]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1002@int.22510.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。