ShanghaiTech University Knowledge Management System
Non-line-of-Sight Imaging via Neural Transient Fields | |
2021-07-01 | |
发表期刊 | IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE |
ISSN | 0162-8828 |
EISSN | 1939-3539 |
卷号 | 43期号:7页码:2257-2268 |
发表状态 | 已发表 |
DOI | 10.1109/TPAMI.2021.3076062 |
摘要 | We present a neural modeling framework for non-line-of-sight (NLOS) imaging. Previous solutions have sought to explicitly recover the 3D geometry (e.g., as point clouds) or voxel density (e.g., within a pre-defined volume) of the hidden scene. In contrast, inspired by the recent Neural Radiance Field (NeRF) approach, we use a multi-layer perceptron (MLP) to represent the neural transient field or NeTF. However, NeTF measures the transient over spherical wavefronts rather than the radiance along lines. We therefore formulate a spherical volume NeTF reconstruction pipeline, applicable to both confocal and non-confocal setups. Compared with NeRF, NeTF samples a much sparser set of viewpoints (scanning spots) and the sampling is highly uneven. We thus introduce a Monte Carlo technique to improve the robustness in the reconstruction. Experiments on synthetic and real datasets demonstrate NeTF achieves state-of-the-art performance and can provide reliable reconstructions even under semi-occlusions and on non-Lambertian materials. |
关键词 | Computational photography non-line-of-sight imaging neural radiance field neural rendering |
URL | 查看原文 |
收录类别 | SCIE ; EI |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000659549700007 |
出版者 | IEEE COMPUTER SOC |
原始文献类型 | Article |
来源库 | IEEE |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/127562 |
专题 | 信息科学与技术学院 物质科学与技术学院 信息科学与技术学院_PI研究组_虞晶怡组 物质科学与技术学院_本科生 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China 3.School of Physical Science and Technology, ShanghaiTech University, Shanghai, China 4.Shanghai Engineering Research Center of Intelligent Vision and Imaging, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Siyuan Shen,Zi Wang,Ping Liu,et al. Non-line-of-Sight Imaging via Neural Transient Fields[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2021,43(7):2257-2268. |
APA | Siyuan Shen.,Zi Wang.,Ping Liu.,Zhengqing Pan.,Ruiqian Li.,...&Jingyi Yu.(2021).Non-line-of-Sight Imaging via Neural Transient Fields.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,43(7),2257-2268. |
MLA | Siyuan Shen,et al."Non-line-of-Sight Imaging via Neural Transient Fields".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 43.7(2021):2257-2268. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Siyuan Shen]的文章 |
[Zi Wang]的文章 |
[Ping Liu]的文章 |
百度学术 |
百度学术中相似的文章 |
[Siyuan Shen]的文章 |
[Zi Wang]的文章 |
[Ping Liu]的文章 |
必应学术 |
必应学术中相似的文章 |
[Siyuan Shen]的文章 |
[Zi Wang]的文章 |
[Ping Liu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。