| |||||||
ShanghaiTech University Knowledge Management System
MEMORY-ASSISTED DUAL-END ADAPTATION NETWORK FOR CHOROID SEGMENTATION IN MULTI-DOMAIN OPTICAL COHERENCE TOMOGRAPHY | |
2021-04 | |
会议录名称 | 2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
![]() |
ISSN | 1945-7928 |
卷号 | 2021-April |
页码 | 1614-1617 |
发表状态 | 已发表 |
DOI | 10.1109/ISBI48211.2021.9433866 |
摘要 | Accurate measurement of choroid layer in optical coherence tomography (OCT) is crucial in the diagnosis of many ocular diseases, such as pathological myopia and glaucoma. Deep learning has shown its superiority in automatic choroid segmentation. However, because of the domain discrepancies among datasets obtained by the OCT devices of different manufacturers, the generalization capability of trained models is limited. We propose a memory-assisted dual-end adaptation network to address the universality problem. Different from the existing works that can only perform one-to-one domain adaptation, our method is capable of performing- ing one-to-many adaptation. In the proposed method, we introduce a memory module to memorize the encoded style features of every involved domain. Both input and output space adaptation are employed to regularize the choroid segmentation. We evaluate the proposed method over different datasets acquired by four major OCT manufacturers (TOP- CON, NIDEK, ZEISS, HEIDELBERG). Experiments show that our proposed method outperforms existing methods with significant margins of improvement in terms of all metrics. |
关键词 | Deep learning Diagnosis Manufacture Medical imaging Ophthalmology Tomography Accurate measurement Domain adaptation Generalization capability Input and outputs Memory modules Multi domains Ocular disease Universality problem |
会议名称 | 18th IEEE International Symposium on Biomedical Imaging, ISBI 2021 |
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA |
会议地点 | Nice, France |
会议日期 | April 13, 2021 - April 16, 2021 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
资助项目 | Ningbo |
WOS研究方向 | Engineering ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:000786144100340 |
出版者 | IEEE Computer Society |
EI入藏号 | 20212310465333 |
EI主题词 | Optical tomography |
EISSN | 1945-8452 |
EI分类号 | 461.6 Medicine and Pharmacology ; 537.1 Heat Treatment Processes ; 741.3 Optical Devices and Systems ; 746 Imaging Techniques |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/126835 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_高盛华组 信息科学与技术学院_博士生 |
通讯作者 | Yang, Jianlong |
作者单位 | 1.Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Ind Technol, Ningbo, Peoples R China 2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 3.Fudan Univ, Dept Ophthalmol, Eye & ENT Hosp, Shanghai, Peoples R China 4.Southern Univ Sci & Technol, Shenzhen, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Chai, Zhenjie,Yang, Jianlong,Zhou, Kang,et al. MEMORY-ASSISTED DUAL-END ADAPTATION NETWORK FOR CHOROID SEGMENTATION IN MULTI-DOMAIN OPTICAL COHERENCE TOMOGRAPHY[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2021:1614-1617. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。