消息
×
loading..
MEMORY-ASSISTED DUAL-END ADAPTATION NETWORK FOR CHOROID SEGMENTATION IN MULTI-DOMAIN OPTICAL COHERENCE TOMOGRAPHY
2021-04
会议录名称2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
ISSN1945-7928
卷号2021-April
页码1614-1617
发表状态已发表
DOI10.1109/ISBI48211.2021.9433866
摘要

Accurate measurement of choroid layer in optical coherence tomography (OCT) is crucial in the diagnosis of many ocular diseases, such as pathological myopia and glaucoma. Deep learning has shown its superiority in automatic choroid segmentation. However, because of the domain discrepancies among datasets obtained by the OCT devices of different manufacturers, the generalization capability of trained models is limited. We propose a memory-assisted dual-end adaptation network to address the universality problem. Different from the existing works that can only perform one-to-one domain adaptation, our method is capable of performing- ing one-to-many adaptation. In the proposed method, we introduce a memory module to memorize the encoded style features of every involved domain. Both input and output space adaptation are employed to regularize the choroid segmentation. We evaluate the proposed method over different datasets acquired by four major OCT manufacturers (TOP- CON, NIDEK, ZEISS, HEIDELBERG). Experiments show that our proposed method outperforms existing methods with significant margins of improvement in terms of all metrics.

关键词Deep learning Diagnosis Manufacture Medical imaging Ophthalmology Tomography Accurate measurement Domain adaptation Generalization capability Input and outputs Memory modules Multi domains Ocular disease Universality problem
会议名称18th IEEE International Symposium on Biomedical Imaging, ISBI 2021
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Nice, France
会议日期April 13, 2021 - April 16, 2021
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
资助项目Ningbo
WOS研究方向Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000786144100340
出版者IEEE Computer Society
EI入藏号20212310465333
EI主题词Optical tomography
EISSN1945-8452
EI分类号461.6 Medicine and Pharmacology ; 537.1 Heat Treatment Processes ; 741.3 Optical Devices and Systems ; 746 Imaging Techniques
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/126835
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_高盛华组
信息科学与技术学院_博士生
通讯作者Yang, Jianlong
作者单位
1.Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Ind Technol, Ningbo, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
3.Fudan Univ, Dept Ophthalmol, Eye & ENT Hosp, Shanghai, Peoples R China
4.Southern Univ Sci & Technol, Shenzhen, Peoples R China
第一作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Chai, Zhenjie,Yang, Jianlong,Zhou, Kang,et al. MEMORY-ASSISTED DUAL-END ADAPTATION NETWORK FOR CHOROID SEGMENTATION IN MULTI-DOMAIN OPTICAL COHERENCE TOMOGRAPHY[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE Computer Society,2021:1614-1617.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chai, Zhenjie]的文章
[Yang, Jianlong]的文章
[Zhou, Kang]的文章
百度学术
百度学术中相似的文章
[Chai, Zhenjie]的文章
[Yang, Jianlong]的文章
[Zhou, Kang]的文章
必应学术
必应学术中相似的文章
[Chai, Zhenjie]的文章
[Yang, Jianlong]的文章
[Zhou, Kang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。