| |||||||
ShanghaiTech University Knowledge Management System
Social Bandit Learning: Strangers Can Help | |
2020 | |
会议录名称 | 2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP)
![]() |
ISSN | 2325-3746 |
页码 | 239-244 |
发表状态 | 已发表 |
DOI | 10.1109/WCSP49889.2020.9299725 |
摘要 | Social learning is usually used to speed up the learning of novice agents, even though this novice agent is only influenced by the external observations. In this paper, an online bandit learning problem that arises in the social learning is analyzed. Specifically, under the multi-armed bandit (MAB) framework, there are multiple agents, one learner, and several targets which are interacting with the unknown environment and making online decisions. To better handle the well-known exploration-exploitation tradeoff in bandit problems and maximize the learner's rewards, we design an online learning algorithm that benefits from others simply by observing the decisions of the targets. The advantage of leveraging the observations is also demonstrated in the derived performance bound. The proposed learning algorithm is further evaluated with numerical simulations. |
会议录编者/会议主办者 | IEEE |
关键词 | Machine learning observational learning social learning online learning multi-armed bandit E-learning Learning algorithms Bandit problems Exploration exploitations Learning problem Multi armed bandit Online decisions Online learning algorithms Performance bounds Unknown environments |
会议名称 | 12th International Conference on Wireless Communications and Signal Processing (WCSP) |
会议地点 | Nanjing, PEOPLES R CHINA |
会议日期 | OCT 21-23, 2020 |
URL | 查看原文 |
收录类别 | CPCI ; CPCI-S ; EI |
语种 | 英语 |
WOS记录号 | WOS:000649741500042 |
出版者 | IEEE |
EI入藏号 | 20210309801480 |
EI主题词 | Multi agent systems |
EI分类号 | 723.4 Artificial Intelligence ; 723.4.2 Machine Learning |
原始文献类型 | Proceedings Paper |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/126819 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_罗喜良组 信息科学与技术学院_硕士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, China 2.Department of Computer Science and Engineering, University of California, Santa Cruz, CA, USA 3.Chinese Academy of Sciences, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Jun Zong,Ting Liu,Zhaowei Zhu,et al. Social Bandit Learning: Strangers Can Help[C]//IEEE:IEEE,2020:239-244. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Jun Zong]的文章 |
[Ting Liu]的文章 |
[Zhaowei Zhu]的文章 |
百度学术 |
百度学术中相似的文章 |
[Jun Zong]的文章 |
[Ting Liu]的文章 |
[Zhaowei Zhu]的文章 |
必应学术 |
必应学术中相似的文章 |
[Jun Zong]的文章 |
[Ting Liu]的文章 |
[Zhaowei Zhu]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。