消息
×
loading..
Social Bandit Learning: Strangers Can Help
2020
会议录名称2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP)
ISSN2325-3746
页码239-244
发表状态已发表
DOI10.1109/WCSP49889.2020.9299725
摘要

Social learning is usually used to speed up the learning of novice agents, even though this novice agent is only influenced by the external observations. In this paper, an online bandit learning problem that arises in the social learning is analyzed. Specifically, under the multi-armed bandit (MAB) framework, there are multiple agents, one learner, and several targets which are interacting with the unknown environment and making online decisions. To better handle the well-known exploration-exploitation tradeoff in bandit problems and maximize the learner's rewards, we design an online learning algorithm that benefits from others simply by observing the decisions of the targets. The advantage of leveraging the observations is also demonstrated in the derived performance bound. The proposed learning algorithm is further evaluated with numerical simulations.

会议录编者/会议主办者IEEE
关键词Machine learning observational learning social learning online learning multi-armed bandit E-learning Learning algorithms Bandit problems Exploration exploitations Learning problem Multi armed bandit Online decisions Online learning algorithms Performance bounds Unknown environments
会议名称12th International Conference on Wireless Communications and Signal Processing (WCSP)
会议地点Nanjing, PEOPLES R CHINA
会议日期OCT 21-23, 2020
URL查看原文
收录类别CPCI ; CPCI-S ; EI
语种英语
WOS记录号WOS:000649741500042
出版者IEEE
EI入藏号20210309801480
EI主题词Multi agent systems
EI分类号723.4 Artificial Intelligence ; 723.4.2 Machine Learning
原始文献类型Proceedings Paper
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/126819
专题信息科学与技术学院
信息科学与技术学院_PI研究组_罗喜良组
信息科学与技术学院_硕士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, China
2.Department of Computer Science and Engineering, University of California, Santa Cruz, CA, USA
3.Chinese Academy of Sciences, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Jun Zong,Ting Liu,Zhaowei Zhu,et al. Social Bandit Learning: Strangers Can Help[C]//IEEE:IEEE,2020:239-244.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jun Zong]的文章
[Ting Liu]的文章
[Zhaowei Zhu]的文章
百度学术
百度学术中相似的文章
[Jun Zong]的文章
[Ting Liu]的文章
[Zhaowei Zhu]的文章
必应学术
必应学术中相似的文章
[Jun Zong]的文章
[Ting Liu]的文章
[Zhaowei Zhu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。