ShanghaiTech University Knowledge Management System
Generalized Supervised Attention for Text Generation | |
2021 | |
会议录名称 | FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021 |
摘要 | The attention-based encoder-decoder framework is widely used in many natural language generation tasks. The attention mechanism builds alignments between target words and source items that facilitate text generation. Previous work proposes supervised attention that uses human knowledge to guide the attention mechanism to learn better alignments. However, well-designed supervision built from ideal alignments can be costly or even infeasible. In this paper, we build a Generalized Supervised Attention method (GSA) based on quasi alignments, which specify candidate sets of alignments and are much easier to obtain than ideal alignments. We design a Summation Cross-Entropy (SCE) loss and a Supervised Multiple Attention (SMA) structure to accommodate quasi alignments. Experiments on three text generation tasks demonstrate that GSA improves generation performance and is robust against errors in attention supervision. |
会议名称 | Joint Conference of 59th Annual Meeting of the Association-for-Computational-Linguistics (ACL) / 11th International Joint Conference on Natural Language Processing (IJCNLP) / 6th Workshop on Representation Learning for NLP (RepL4NLP) |
出版地 | 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA |
会议地点 | null,null,ELECTR NETWORK |
会议日期 | AUG 01-06, 2021 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61976139] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods |
WOS记录号 | WOS:001181734704035 |
出版者 | ASSOC COMPUTATIONAL LINGUISTICS-ACL |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/126612 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_屠可伟组 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University 2.Shanghai Engineering Research Center of Intelligent Vision and Imaging 3.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences 4.University of Chinese Academy of Sciences 5.Institute of Advanced Technology, Westlake Institute for Advanced Study, China 6.School of Engineering, Westlake University, Hangzhou, China 7.DAMO Academy, Alibaba Group |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Liu, Yixian,Zhang, Liwen,Zhang, Xinyu,et al. Generalized Supervised Attention for Text Generation[C]. 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA:ASSOC COMPUTATIONAL LINGUISTICS-ACL,2021. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。