| |||||||
ShanghaiTech University Knowledge Management System
Ensemble learning models that predict surface protein abundance from single-cell multimodal omics data | |
2021-05 | |
发表期刊 | METHODS (IF:4.2[JCR-2023],3.8[5-Year]) |
ISSN | 1046-2023 |
EISSN | 1095-9130 |
卷号 | 189页码:65-73 |
发表状态 | 已发表 |
DOI | 10.1016/j.ymeth.2020.10.001 |
摘要 | Single-cell protein abundance is a fundamental type of information to characterize cell states. Due to high cost and technical barriers, however, direct quantification of proteins is difficult. Single-cell RNA sequencing (scRNAseq) data, serving as a cost-effective substitute of single-cell proteomics, may not accurately reflect protein expression levels due to measurement error, noise, post-transcriptional and translational regulation, etc. The recently emerging single-cell multimodal omics data, e.g. CITE-seq and REAP-seq, can simultaneously profile RNA and protein abundances in single cells, providing labeled data for predictive modeling in a supervised learning framework. Deep neural network-based transfer learning method has been applied to imputation of surface protein abundances from single-cell transcriptomic data. However, it is unclear if the artificial neural network is the best model, and it is desirable to improve the prediction performance (e.g. accuracy, interpretability) of machine learning models. In this paper, we compared several tree-based ensemble learning methods with neural network models, and found that ensemble learning often performed better than neural network, and Random Forest (RF) performed the best overall. Moreover, we used the feature importance scores from RF to interpret biological mechanisms underlying the prediction. Our study demonstrates the effectiveness of ensemble learning for reliable protein abundances prediction using single-cell multimodal omics data, and paves the way for knowledge discovery by mining single-cell multi-omics data in large scale. |
关键词 | Single cell Ensemble learning Protein abundance Transcriptomic CITE-seq REAP-seq |
收录类别 | SCIE |
语种 | 英语 |
WOS研究方向 | Biochemistry & Molecular Biology |
WOS类目 | Biochemical Research Methods ; Biochemistry & Molecular Biology |
WOS记录号 | WOS:000635650900008 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/126217 |
专题 | 生命科学与技术学院_硕士生 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_郑杰组 |
共同第一作者 | Wang, Shike |
通讯作者 | Zheng, Jie |
作者单位 | 1.ShanghaiTech University, School of Information Science & Technology, 302-D,SIST Bldg 2,393 Middle Huaxia Rd, Shanghai 201210, Peoples R China; 2.University of Manchester, Cancer Research UK Manchester Institute, Mol Oncol Grp, Manchester, Lancs, England |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Xu, Fan,Wang, Shike,Dai, Xinnan,et al. Ensemble learning models that predict surface protein abundance from single-cell multimodal omics data[J]. METHODS,2021,189:65-73. |
APA | Xu, Fan,Wang, Shike,Dai, Xinnan,Mundra, Piyushkumar A.,&Zheng, Jie.(2021).Ensemble learning models that predict surface protein abundance from single-cell multimodal omics data.METHODS,189,65-73. |
MLA | Xu, Fan,et al."Ensemble learning models that predict surface protein abundance from single-cell multimodal omics data".METHODS 189(2021):65-73. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xu, Fan]的文章 |
[Wang, Shike]的文章 |
[Dai, Xinnan]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xu, Fan]的文章 |
[Wang, Shike]的文章 |
[Dai, Xinnan]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xu, Fan]的文章 |
[Wang, Shike]的文章 |
[Dai, Xinnan]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。