ShanghaiTech University Knowledge Management System
Y-LineageTracker: a high-throughput analysis framework for Y-chromosomal next-generation sequencing data | |
2021-03-09 | |
发表期刊 | BMC BIOINFORMATICS (IF:2.9[JCR-2023],3.6[5-Year]) |
ISSN | 1471-2105 |
卷号 | 22期号:1 |
DOI | 10.1186/s12859-021-04057-z |
摘要 | Background: Y-chromosome DNA (Y-DNA) has been used for tracing paternal lineages and offers a clear path from an individual to a known, or likely, direct paternal ancestor. The advance of next-generation sequencing (NGS) technologies increasingly improves the resolution of the non-recombining region of the Y-chromosome (NRY). However, a lack of suitable computer tools prevents the use of NGS data from the Y-DNA studies. Results: We developed Y-LineageTracker, a high-throughput analysis framework that not only utilizes state-of-the-art methodologies to automatically determine NRY haplogroups and identify microsatellite variants of Y-chromosome on a fine scale, but also optimizes comprehensive Y-DNA analysis methods for NGS data. Notably, Y-LineageTracker integrates the NRY haplogroup and Y-STR analysis modules with recognized strategies to robustly suggest an interpretation for paternal genetics and evolution. NRY haplogroup module mainly covers haplogroup classification, clustering analysis, phylogeny construction, and divergence time estimation of NRY haplogroups, and Y-STR module mainly includes Y-STR genotyping, statistical calculation, network analysis, and estimation of time to the most recent common ancestor (TMRCA) based on Y-STR haplotypes. Performance comparison indicated that Y-LineageTracker outperformed existing Y-DNA analysis tools for the high performance and satisfactory visualization effect. Conclusions: Y-LineageTracker is an open-source and user-friendly command-line tool that provide multiple functions to efficiently analyze Y-DNA from NGS data at both Y-SNP and Y-STR level. Additionally, Y-LineageTracker supports various formats of input data and produces high-quality figures suitable for publication. Y-LineageTracker is coded with Python3 and supports Windows, Linux, and macOS platforms, and can be installed manually or via the Python Package Index (PyPI). The source code, examples, and manual of Y-LineageTracker are freely available at or CodeOcean (https://codeocean.com/capsule/7424381/tree). |
关键词 | Y-chromosome DNA NGS NRY haplogroup Y-STR Population genetics |
URL | 查看原文 |
收录类别 | SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Mathematical & Computational Biology |
WOS类目 | Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Mathematical & Computational Biology |
WOS记录号 | WOS:000627887200002 |
出版者 | BMC |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/126162 |
专题 | 生命科学与技术学院_特聘教授组_徐书华组 |
通讯作者 | Xu, Shuhua |
作者单位 | 1.Chinese Acad Sci, Univ Chinese Acad Sci, Shanghai Inst Nutr & Hlth, Key Lab Computat Biol, Shanghai 200031, Peoples R China; 2.Fudan Univ, Sch Life Sci, Shanghai 200433, Peoples R China; 3.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China; 4.Chinese Acad Sci, Ctr Excellence Anim Evolut & Genet, Kunming 650223, Yunnan, Peoples R China; 5.Zhengzhou Univ, Henan Inst Med & Pharmaceut Sci, Zhengzhou 450052, Peoples R China; 6.Fudan Univ, Collaborat Innovat Ctr Genet & Dev, Shanghai 200438, Peoples R China |
通讯作者单位 | 生命科学与技术学院 |
推荐引用方式 GB/T 7714 | Chen, Hao,Lu, Yan,Lu, Dongsheng,et al. Y-LineageTracker: a high-throughput analysis framework for Y-chromosomal next-generation sequencing data[J]. BMC BIOINFORMATICS,2021,22(1). |
APA | Chen, Hao,Lu, Yan,Lu, Dongsheng,&Xu, Shuhua.(2021).Y-LineageTracker: a high-throughput analysis framework for Y-chromosomal next-generation sequencing data.BMC BIOINFORMATICS,22(1). |
MLA | Chen, Hao,et al."Y-LineageTracker: a high-throughput analysis framework for Y-chromosomal next-generation sequencing data".BMC BIOINFORMATICS 22.1(2021). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chen, Hao]的文章 |
[Lu, Yan]的文章 |
[Lu, Dongsheng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chen, Hao]的文章 |
[Lu, Yan]的文章 |
[Lu, Dongsheng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chen, Hao]的文章 |
[Lu, Yan]的文章 |
[Lu, Dongsheng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。