Prediction of energies for reaction intermediates and transition states on catalyst surfaces using graph-based machine learning models
2020-12
发表期刊MOLECULAR CATALYSIS (IF:3.9[JCR-2023],3.8[5-Year])
ISSN2468-8231
卷号498页码:#VALUE!
发表状态已发表
DOI10.1016/j.mcat.2020.111266
摘要

Computational studies of heterogeneous catalysis processes depend on massive electronic structure calculations to obtain the energies of intermediates and transition states. To speed up this process, several machine-learningbased methods were proposed for the prediction of surface species energies. Here we developed a new method to represent all surface species with molecular graph, a data structure which is easy to read and extendable, but seldom utilized in catalysis studies. The molecular graph dataset consists of 315 C-1/C-2 surface intermediates and transition states on Rh(111), which are all possible intermediates in the complex reaction network of ethanol synthesis from syngas. Three recently proposed graph-based machine learning methods, namely graph convolutions, weave and graph neural network, were employed to train models and predict the energies from molecular graphs. Furthermore, two ensemble models combining the abovementioned models were built, using which the best RMSE and MAE reaches 0.19 and 0.15 eV, respectively. In addition, error of activation energies predicted with graph neural network was compared with that predicted using traditional BEP relations, and error of the prediction for surface intermediate energies and transition state energies were compared. Finally, possible directions of using the developed methods in extendable energy predictions were suggested and discussed.

关键词Machine learning Molecular graph Energy prediction Surface species BEP relation
收录类别SCI ; SCIE ; EI
WOS研究方向Chemistry
WOS类目Chemistry, Physical
WOS记录号WOS:000599903700003
出版者ELSEVIER
WOS关键词HORIUTI-POLANYI MECHANISM ; HETEROGENEOUS CATALYSIS ; MOLECULAR DESCRIPTORS ; SCALING RELATIONSHIPS ; ADSORPTION ENERGIES ; GROUP ADDITIVITY ; HYDROGENATION ; SELECTIVITY ; ALLOYS
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/125970
专题物质科学与技术学院_硕士生
物质科学与技术学院_PI研究组_杨波组
物质科学与技术学院_本科生
通讯作者Yang, Bo
作者单位
ShanghaiTech Univ, Sch Phys Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China
第一作者单位物质科学与技术学院
通讯作者单位物质科学与技术学院
第一作者的第一单位物质科学与技术学院
推荐引用方式
GB/T 7714
Wang, Baochuan,Gu, Tangjie,Lu, Yijun,et al. Prediction of energies for reaction intermediates and transition states on catalyst surfaces using graph-based machine learning models[J]. MOLECULAR CATALYSIS,2020,498:#VALUE!.
APA Wang, Baochuan,Gu, Tangjie,Lu, Yijun,&Yang, Bo.(2020).Prediction of energies for reaction intermediates and transition states on catalyst surfaces using graph-based machine learning models.MOLECULAR CATALYSIS,498,#VALUE!.
MLA Wang, Baochuan,et al."Prediction of energies for reaction intermediates and transition states on catalyst surfaces using graph-based machine learning models".MOLECULAR CATALYSIS 498(2020):#VALUE!.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Baochuan]的文章
[Gu, Tangjie]的文章
[Lu, Yijun]的文章
百度学术
百度学术中相似的文章
[Wang, Baochuan]的文章
[Gu, Tangjie]的文章
[Lu, Yijun]的文章
必应学术
必应学术中相似的文章
[Wang, Baochuan]的文章
[Gu, Tangjie]的文章
[Lu, Yijun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。