消息
×
loading..
One Step Ahead: A Framework for Detecting Unexpected Incidents and Predicting the Stock Markets
2021
发表期刊IEEE ACCESS (IF:3.4[JCR-2023],3.7[5-Year])
ISSN2169-3536
卷号9页码:30292-30305
发表状态已发表
DOI10.1109/ACCESS.2021.3059283
摘要

Unexpected incidents can be destructive or even disastrous, affecting the financial markets. Incidents such as the 9/11 attacks (2001), the Fukushima nuclear disaster (2011), and the COVID-19 outbreaks (2019, 2020) severely shocked both local and global markets. For investors, it is crucial to quantify the key facts that affect the incidents' impacts, and to estimate the reactions of the markets accurately and efficiently for global event-driven investment strategies. Though Web data and other alternative data allow such a possibility, it is still very challenging to mine noisy and often biased heterogeneous data sources, and construct a unified framework for modeling global markets across across time and regions. As a first attempt, we build a framework that extracts incident facts globally based on a deep neural network, feeds them into models built on a global event database complemented with novel socioeconomic datasets (e.g. nightlight data from satellites), and predicts stock market directions in a simulated real-world setting with interpretable results that outperform various baselines. Specifically, we study terrorist attacks in three countries for over 20 years on average, as a first effort to systematically quantify the impact on stock markets at a large scale using novel indicators.

关键词Stock markets Terrorism Biological system modeling Databases Predictive models Data mining Satellites Satellite data stock market prediction terrorist attacks unexpected incidents
URL查看原文
收录类别SCI ; EI ; SCIE ; SSCI
语种英语
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000622078600001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
原始文献类型Article
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/125913
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_张海鹏组
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Ziyue Li,Shiwei Lyu,Haipeng Zhang,et al. One Step Ahead: A Framework for Detecting Unexpected Incidents and Predicting the Stock Markets[J]. IEEE ACCESS,2021,9:30292-30305.
APA Ziyue Li,Shiwei Lyu,Haipeng Zhang,&Tianpei Jiang.(2021).One Step Ahead: A Framework for Detecting Unexpected Incidents and Predicting the Stock Markets.IEEE ACCESS,9,30292-30305.
MLA Ziyue Li,et al."One Step Ahead: A Framework for Detecting Unexpected Incidents and Predicting the Stock Markets".IEEE ACCESS 9(2021):30292-30305.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ziyue Li]的文章
[Shiwei Lyu]的文章
[Haipeng Zhang]的文章
百度学术
百度学术中相似的文章
[Ziyue Li]的文章
[Shiwei Lyu]的文章
[Haipeng Zhang]的文章
必应学术
必应学术中相似的文章
[Ziyue Li]的文章
[Shiwei Lyu]的文章
[Haipeng Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。