消息
×
loading..
Segmented Embedded Rapid Defect Detection Method for Bearing Surface Defects
2021-02
发表期刊MACHINES (IF:2.1[JCR-2023],2.2[5-Year])
EISSN2075-1702
卷号9期号:2页码:#VALUE!
DOI10.3390/machines9020040
摘要The rapid development of machine vision has prompted the continuous emergence of new detection systems and algorithms in surface defect detection. However, most of the existing methods establish their systems with few comparisons and verifications, and the methods described still have various problems. Thus, an original defect detection method: Segmented Embedded Rapid Defect Detection Method for Surface Defects (SERDD) is proposed in this paper. This method realizes the two-way fusion of image processing and defect detection, which can efficiently and accurately detect surface defects such as depression, scratches, notches, oil, shallow characters, abnormal dimensions, etc. Besides, the character recognition method based on Spatial Pyramid Character Proportion Matching (SPCPM) is used to identify the engraved characters on the bearing dust cover. Moreover, the problem of characters being cut in coordinate transformation is solved through Image Self-Stitching-and-Cropping (ISSC). This paper adopts adequate real image data to verify and compare the methods and proves the effectiveness and advancement through detection accuracy, missing alarm rate, and false alarm rate. This method can provide machine vision technical support for bearing surface defect detection in its real sense.
关键词bearing surface defect defect detection image processing character recognition
URL查看原文
收录类别SCI ; SCIE
语种英语
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic ; Engineering, Mechanical
WOS记录号WOS:000622684800001
出版者MDPI
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/125837
专题信息科学与技术学院_硕士生
信息科学与技术学院_博士生
通讯作者Sun, Shengli
作者单位
1.Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China;
2.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China;
3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China;
4.Chinese Acad Sci, Key Lab Intelligent Infrared Percept, Shanghai 200083, Peoples R China
第一作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Lei, Linjian,Sun, Shengli,Zhang, Yue,et al. Segmented Embedded Rapid Defect Detection Method for Bearing Surface Defects[J]. MACHINES,2021,9(2):#VALUE!.
APA Lei, Linjian,Sun, Shengli,Zhang, Yue,Liu, Huikai,&Xie, Hui.(2021).Segmented Embedded Rapid Defect Detection Method for Bearing Surface Defects.MACHINES,9(2),#VALUE!.
MLA Lei, Linjian,et al."Segmented Embedded Rapid Defect Detection Method for Bearing Surface Defects".MACHINES 9.2(2021):#VALUE!.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lei, Linjian]的文章
[Sun, Shengli]的文章
[Zhang, Yue]的文章
百度学术
百度学术中相似的文章
[Lei, Linjian]的文章
[Sun, Shengli]的文章
[Zhang, Yue]的文章
必应学术
必应学术中相似的文章
[Lei, Linjian]的文章
[Sun, Shengli]的文章
[Zhang, Yue]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3390@machines9020040.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。