| |||||||
ShanghaiTech University Knowledge Management System
Automatic Reconstruction of Mitochondria and Endoplasmic Reticulum in Electron Microscopy Volumes by Deep Learning | |
2020-07-21 | |
发表期刊 | FRONTIERS IN NEUROSCIENCE (IF:3.2[JCR-2023],4.3[5-Year]) |
EISSN | 1662-453X |
卷号 | 14 |
发表状态 | 已发表 |
DOI | 10.3389/fnins.2020.00599 |
摘要 | Together, mitochondria and the endoplasmic reticulum (ER) occupy more than 20% of a cell's volume, and morphological abnormality may lead to cellular function disorders. With the rapid development of large-scale electron microscopy (EM), manual contouring and three-dimensional (3D) reconstruction of these organelles has previously been accomplished in biological studies. However, manual segmentation of mitochondria and ER from EM images is time consuming and thus unable to meet the demands of large data analysis. Here, we propose an automated pipeline for mitochondrial and ER reconstruction, including the mitochondrial and ER contact sites (MAMs). We propose a novel recurrent neural network to detect and segment mitochondria and a fully residual convolutional network to reconstruct the ER. Based on the sparse distribution of synapses, we use mitochondrial context information to rectify the local misleading results and obtain 3D mitochondrial reconstructions. The experimental results demonstrate that the proposed method achieves state-of-the-art performance. |
关键词 | mitochondria endoplasmic reticulum electron microscopes segmentation 3D reconstruction |
URL | 查看原文 |
收录类别 | SCI ; SCIE |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61673381][31970960] ; Special Program of Beijing Municipal Science & Technology Commission[Z181100000118002] ; Strategic Priority Research Program of Chinese Academy of Science[XDB32030200] ; Bureau of International Cooperation, CAS[153D31KYSB20170059] ; Scientific Instrument Developing Project of Chinese Academy of Sciences[YZ201671] ; key program of the Ministry of Science and Technology of the People's Republic of China[2018YFC1005004] |
WOS研究方向 | Neurosciences & Neurology |
WOS类目 | Neurosciences |
WOS记录号 | WOS:000558860100001 |
出版者 | FRONTIERS MEDIA SA |
WOS关键词 | MITOFUSIN 2 ; DYNAMICS ; SEGMENTATION ; TRANSPORT ; SITES |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/122944 |
专题 | 生命科学与技术学院_PI研究组_杨扬组 |
通讯作者 | Xie, Qiwei; Han, Hua |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China 2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Sch Future Technol, Beijing, Peoples R China 3.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China 4.Beijing Univ Technol, Data Min Lab, Beijing, Peoples R China 5.CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Jing,Li, Linlin,Yang, Yang,et al. Automatic Reconstruction of Mitochondria and Endoplasmic Reticulum in Electron Microscopy Volumes by Deep Learning[J]. FRONTIERS IN NEUROSCIENCE,2020,14. |
APA | Liu, Jing.,Li, Linlin.,Yang, Yang.,Hong, Bei.,Chen, Xi.,...&Han, Hua.(2020).Automatic Reconstruction of Mitochondria and Endoplasmic Reticulum in Electron Microscopy Volumes by Deep Learning.FRONTIERS IN NEUROSCIENCE,14. |
MLA | Liu, Jing,et al."Automatic Reconstruction of Mitochondria and Endoplasmic Reticulum in Electron Microscopy Volumes by Deep Learning".FRONTIERS IN NEUROSCIENCE 14(2020). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liu, Jing]的文章 |
[Li, Linlin]的文章 |
[Yang, Yang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liu, Jing]的文章 |
[Li, Linlin]的文章 |
[Yang, Yang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liu, Jing]的文章 |
[Li, Linlin]的文章 |
[Yang, Yang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。