ShanghaiTech University Knowledge Management System
Fast-MVSNet: Sparse-to-Dense Multi-View Stereo With Learned Propagation and Gauss-Newton Refinement | |
2020-06 | |
会议录名称 | 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) |
ISSN | 1063-6919 |
页码 | 1946-1955 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR42600.2020.00202 |
摘要 | Almost all previous deep learning-based multi-view stereo (MVS) approaches focus on improving reconstruction quality. Besides quality, efficiency is also a desirable feature for MVS in real scenarios. Towards this end, this paper presents a Fast-MVSNet, a novel sparse-to-dense coarse-to-fine framework, for fast and accurate depth estimation in MVS. Specifically, in our Fast-MVSNet, we first construct a sparse cost volume for learning a sparse and high-resolution depth map. Then we leverage a small-scale convolutional neural network to encode the depth dependencies for pixels within a local region to densify the sparse high-resolution depth map. At last, a simple but efficient Gauss-Newton layer is proposed to further optimize the depth map. On one hand, the high-resolution depth map, the data-adaptive propagation method and the Gauss-Newton layer jointly guarantee the effectiveness of our method. On the other hand, all modules in our Fast-MVSNet are lightweight and thus guarantee the efficiency of our approach. Besides, our approach is also memory-friendly because of the sparse depth representation. Extensive experimental results show that our method is 5 times and 14 times faster than Point-MVSNet and R-MVSNet, respectively, while achieving comparable or even better results on the challenging Tanks and Temples dataset as well as the DTU dataset. Code is available at https://github.com/svip-lab/FastMVSNet. |
关键词 | Three-dimensional displays Memory management Image resolution Prediction algorithms Image reconstruction Optimization Feature extraction |
会议地点 | Seattle, WA, USA |
会议日期 | 13-19 June 2020 |
URL | 查看原文 |
收录类别 | CPCI ; CPCI-S ; EI |
原始文献类型 | Conferences |
来源库 | IEEE |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/122917 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_高盛华组 |
作者单位 | ShanghaiTech University |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Zehao Yu,Shenghua Gao. Fast-MVSNet: Sparse-to-Dense Multi-View Stereo With Learned Propagation and Gauss-Newton Refinement[C],2020:1946-1955. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zehao Yu]的文章 |
[Shenghua Gao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zehao Yu]的文章 |
[Shenghua Gao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zehao Yu]的文章 |
[Shenghua Gao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。