ShanghaiTech University Knowledge Management System
Neural3D: Light-weight Neural Portrait Scanning via Context-aware Correspondence Learning | |
2020-08 | |
会议录名称 | 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2020 |
发表状态 | 已发表 |
DOI | 10.1145/3394171.3413734 |
摘要 | Reconstructing a human portrait in a realistic and convenient manner is critical for human modeling and understanding. Aiming at light-weight and realistic human portrait reconstruction, in this paper we propose Neural3D: a novel neural human portrait scanning system using only a single RGB camera. In our system, to enable accurate pose estimation, we propose a context-aware correspondence learning approach which jointly models the appearance, spatial and motion information between feature pairs. To enable realistic reconstruction and suppress the geometry error, we further adopta point-based neural rendering scheme to generate realistic and immersive portrait visualization in arbitrary virtual view-points. By introducing these learning-based technical components into the pure RGB-based human modeling framework, we can achieve both accurate camera pose estimation and realistic free-viewpoint rendering of the reconstructed human portrait. Extensive experiments on a variety of challenging capture scenarios demonstrate the robustness and effectiveness of our approach. |
收录类别 | EI ; CPCI ; CPCI-S |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/122716 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_博士生 |
作者单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Xin Suo,Minye Wu,Yanshun Zhang,et al. Neural3D: Light-weight Neural Portrait Scanning via Context-aware Correspondence Learning[C],2020. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xin Suo]的文章 |
[Minye Wu]的文章 |
[Yanshun Zhang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xin Suo]的文章 |
[Minye Wu]的文章 |
[Yanshun Zhang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xin Suo]的文章 |
[Minye Wu]的文章 |
[Yanshun Zhang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。