ShanghaiTech University Knowledge Management System
Prediction of disulfide bond engineering sites using a machine learning method | |
2020-06-25 | |
发表期刊 | SCIENTIFIC REPORTS (IF:3.8[JCR-2023],4.3[5-Year]) |
ISSN | 2045-2322 |
卷号 | 10期号:1 |
发表状态 | 已发表 |
DOI | 10.1038/s41598-020-67230-z |
摘要 | Disulfide bonds are covalently bonded sulfur atoms from cysteine pairs in protein structures. Due to the importance of disulfide bonds in protein folding and structural stability, artificial disulfide bonds are often engineered by cysteine mutation to enhance protein structural stability. To facilitate the experimental design, we implemented a method based on neural networks to predict amino acid pairs for cysteine mutations to form engineered disulfide bonds. The designed neural network was trained with high-resolution structures curated from the Protein Data Bank. The testing results reveal that the proposed method recognizes 99% of natural disulfide bonds. In the test with engineered disulfide bonds, the algorithm achieves similar accuracy levels with other state-of-the-art algorithms in published dataset and better performance for two comprehensively studied proteins with 70% accuracy, demonstrating potential applications in protein engineering. The neural network framework allows exploiting the full features in distance space, and therefore improves accuracy of the disulfide bond engineering site prediction. The source code and a web server are available at http://liulab.csrc.ac.cn/ssbondpre. |
URL | 查看原文 |
收录类别 | SCI ; SCIE |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[31971136][U1530402][U1430237] |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:000546571800007 |
出版者 | NATURE PUBLISHING GROUP |
WOS关键词 | PROTEIN ; STABILITY |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/122445 |
专题 | iHuman研究所_PI研究组_刘志杰组 |
通讯作者 | Liu, Haiguang |
作者单位 | 1.Beijing Computat Sci Res Ctr, Complex Syst Div, 8 E Xibeiwang Rd, Beijing 100193, Peoples R China 2.Univ Sci & Technol China, Sch Software Engn, Suzhou 215123, Jiangsu, Peoples R China 3.Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China 4.ShanghaiTech Univ, iHuman Inst, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China |
推荐引用方式 GB/T 7714 | Gao, Xiang,Dong, Xiaoqun,Li, Xuanxuan,et al. Prediction of disulfide bond engineering sites using a machine learning method[J]. SCIENTIFIC REPORTS,2020,10(1). |
APA | Gao, Xiang,Dong, Xiaoqun,Li, Xuanxuan,Liu, Zhijie,&Liu, Haiguang.(2020).Prediction of disulfide bond engineering sites using a machine learning method.SCIENTIFIC REPORTS,10(1). |
MLA | Gao, Xiang,et al."Prediction of disulfide bond engineering sites using a machine learning method".SCIENTIFIC REPORTS 10.1(2020). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。