| |||||||
ShanghaiTech University Knowledge Management System
Ranking from crowdsourced pairwise comparisons via smoothed Riemannian optimization | |
2020-03 | |
发表期刊 | ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA (IF:4.0[JCR-2023],3.9[5-Year]) |
ISSN | 1556472X |
卷号 | 14期号:2 |
发表状态 | 已发表 |
DOI | 10.1145/3372407 |
摘要 | Social Internet of Things has recently become a promising paradigm for augmenting the capability of humans and devices connected in the networks to provide services. In social Internet of Things network, crowdsourcing that collects the intelligence of the human crowd has served as a powerful tool for data acquisition and distributed computing. To support critical applications (e.g., a recommendation system and assessing the inequality of urban perception), in this article, we shall focus on the collaborative ranking problems for user preference prediction from crowdsourced pairwise comparisons. Based on the Bradley-Terry-Luce (BTL) model, a maximum likelihood estimation (MLE) is proposed via low-rank approach in order to estimate the underlying weight/score matrix, thereby predicting the ranking list for each user. A novel regularized formulation with the smoothed surrogate of elementwise infinity norm is proposed in order to address the unique challenge of the coupled the non-smooth elementwise infinity norm constraint and non-convex low-rank constraint in the MLE problem. We solve the resulting smoothed rank-constrained optimization problem via developing the Riemannian trust-region algorithm on quotient manifolds of fixed-rank matrices, which enjoys the superlinear convergence rate. The admirable performance and algorithmic advantages of the proposed method over the state-of-the-art algorithms are demonstrated via numerical results. Moreover, the proposed method outperforms state-of-the-art algorithms on large collaborative filtering datasets in both success rate of inferring preference and normalized discounted cumulative gain. |
收录类别 | SCI ; EI ; SCIE |
语种 | 英语 |
资助项目 | National Nature Science Foundation of China[61601290] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Information Systems ; Computer Science, Software Engineering |
WOS记录号 | WOS:000537966100007 |
出版者 | Association for Computing Machinery |
EI入藏号 | 20200908218228 |
EI主题词 | Collaborative filtering ; Crowdsourcing ; Data acquisition ; Internet of things ; Large dataset ; Matrix algebra ; Maximum likelihood estimation ; Numerical methods ; Social computing |
EI分类号 | Computer Software, Data Handling and Applications:723 ; Data Processing and Image Processing:723.2 ; Information Sources and Analysis:903.1 ; Algebra:921.1 ; Numerical Methods:921.6 ; Statistical Methods:922 ; Systems Science:961 |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/120821 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_博士生 |
通讯作者 | Shi, Yuanming |
作者单位 | Shanghai Tech University, Shanghai; 201210, China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Dong, Jialin,Yang, Kai,Shi, Yuanming. Ranking from crowdsourced pairwise comparisons via smoothed Riemannian optimization[J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA,2020,14(2). |
APA | Dong, Jialin,Yang, Kai,&Shi, Yuanming.(2020).Ranking from crowdsourced pairwise comparisons via smoothed Riemannian optimization.ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA,14(2). |
MLA | Dong, Jialin,et al."Ranking from crowdsourced pairwise comparisons via smoothed Riemannian optimization".ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA 14.2(2020). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。