| |||||||
ShanghaiTech University Knowledge Management System
Gaussian Process Based Expected Information Gain Computation for Bayesian Optimal Design | |
2020-02 | |
发表期刊 | ENTROPY (IF:2.1[JCR-2023],2.2[5-Year]) |
ISSN | 1099-4300 |
卷号 | 22期号:2 |
发表状态 | 已发表 |
DOI | 10.3390/e22020258 |
摘要 | Optimal experimental design (OED) is of great significance in efficient Bayesian inversion. A popular choice of OED methods is based on maximizing the expected information gain (EIG), where expensive likelihood functions are typically involved. To reduce the computational cost, in this work, a novel double-loop Bayesian Monte Carlo (DLBMC) method is developed to efficiently compute the EIG, and a Bayesian optimization (BO) strategy is proposed to obtain its maximizer only using a small number of samples. For Bayesian Monte Carlo posed on uniform and normal distributions, our analysis provides explicit expressions for the mean estimates and the bounds of their variances. The accuracy and the efficiency of our DLBMC and BO based optimal design are validated and demonstrated with numerical experiments. |
关键词 | Bayesian Monte Carlo Bayesian optimal experimental design Bayesian optimization |
收录类别 | SCI ; SCIE |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[11601329] |
WOS研究方向 | Physics |
WOS类目 | Physics, Multidisciplinary |
WOS记录号 | WOS:000521371400014 |
出版者 | MDPI |
WOS关键词 | A-OPTIMAL DESIGN ; GLOBAL OPTIMIZATION ; INVERSE PROBLEMS ; SURROGATES |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/118940 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_廖奇峰组 |
通讯作者 | Liao, Qifeng |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Xu, Zhihang,Liao, Qifeng. Gaussian Process Based Expected Information Gain Computation for Bayesian Optimal Design[J]. ENTROPY,2020,22(2). |
APA | Xu, Zhihang,&Liao, Qifeng.(2020).Gaussian Process Based Expected Information Gain Computation for Bayesian Optimal Design.ENTROPY,22(2). |
MLA | Xu, Zhihang,et al."Gaussian Process Based Expected Information Gain Computation for Bayesian Optimal Design".ENTROPY 22.2(2020). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Xu, Zhihang]的文章 |
[Liao, Qifeng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Xu, Zhihang]的文章 |
[Liao, Qifeng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Xu, Zhihang]的文章 |
[Liao, Qifeng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。