消息
×
loading..
Gaussian Process Based Expected Information Gain Computation for Bayesian Optimal Design
2020-02
发表期刊ENTROPY (IF:2.1[JCR-2023],2.2[5-Year])
ISSN1099-4300
卷号22期号:2
发表状态已发表
DOI10.3390/e22020258
摘要

Optimal experimental design (OED) is of great significance in efficient Bayesian inversion. A popular choice of OED methods is based on maximizing the expected information gain (EIG), where expensive likelihood functions are typically involved. To reduce the computational cost, in this work, a novel double-loop Bayesian Monte Carlo (DLBMC) method is developed to efficiently compute the EIG, and a Bayesian optimization (BO) strategy is proposed to obtain its maximizer only using a small number of samples. For Bayesian Monte Carlo posed on uniform and normal distributions, our analysis provides explicit expressions for the mean estimates and the bounds of their variances. The accuracy and the efficiency of our DLBMC and BO based optimal design are validated and demonstrated with numerical experiments.

关键词Bayesian Monte Carlo Bayesian optimal experimental design Bayesian optimization
收录类别SCI ; SCIE
语种英语
资助项目National Natural Science Foundation of China[11601329]
WOS研究方向Physics
WOS类目Physics, Multidisciplinary
WOS记录号WOS:000521371400014
出版者MDPI
WOS关键词A-OPTIMAL DESIGN ; GLOBAL OPTIMIZATION ; INVERSE PROBLEMS ; SURROGATES
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/118940
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_廖奇峰组
通讯作者Liao, Qifeng
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Xu, Zhihang,Liao, Qifeng. Gaussian Process Based Expected Information Gain Computation for Bayesian Optimal Design[J]. ENTROPY,2020,22(2).
APA Xu, Zhihang,&Liao, Qifeng.(2020).Gaussian Process Based Expected Information Gain Computation for Bayesian Optimal Design.ENTROPY,22(2).
MLA Xu, Zhihang,et al."Gaussian Process Based Expected Information Gain Computation for Bayesian Optimal Design".ENTROPY 22.2(2020).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu, Zhihang]的文章
[Liao, Qifeng]的文章
百度学术
百度学术中相似的文章
[Xu, Zhihang]的文章
[Liao, Qifeng]的文章
必应学术
必应学术中相似的文章
[Xu, Zhihang]的文章
[Liao, Qifeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。