Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis
2019-10
会议录名称2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV)
ISSN1550-5499
卷号2019-October
页码5903-5912
发表状态已发表
DOI10.1109/ICCV.2019.00600
摘要

We tackle the human motion imitation, appearance transfer, and novel view synthesis within a unified framework, which means that the model once being trained can be used to handle all these tasks. The existing task-specific methods mainly use 2D keypoints (pose) to estimate the human body structure. However, they only expresses the position information with no abilities to characterize the personalized shape of the individual person and model the limbs rotations. In this paper, we propose to use a 3D body mesh recovery module to disentangle the pose and shape, which can not only model the joint location and rotation but also characterize the personalized body shape. To preserve the source information, such as texture, style, color, and face identity, we propose a Liquid Warping GAN with Liquid Warping Block (LWB) that propagates the source information in both image and feature spaces, and synthesizes an image with respect to the reference. Specifically, the source features are extracted by a denoising convolutional auto-encoder for characterizing the source identity well. Furthermore, our proposed method is able to support a more flexible warping from multiple sources. In addition, we build a new dataset, namely Impersonator (iPER) dataset, for the evaluation of human motion imitation, appearance transfer, and novel view synthesis. Extensive experiments demonstrate the effectiveness of our method in several aspects, such as robustness in occlusion case and preserving face identity, shape consistency and clothes details. All codes and datasets are available on https://svip-lab.github.io/project/impersonator.html.

关键词Gallium nitride Task analysis Three-dimensional displays Feature extraction Liquids Image color analysis Face
会议地点Seoul, Korea, Republic of
会议日期27 Oct.-2 Nov. 2019
URL查看原文
收录类别EI ; CPCI-S ; CPCI
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20201208326956
EI主题词Computer vision ; Textures
EI分类号Computer Applications:723.5
原始文献类型Conferences
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/114801
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_高盛华组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
通讯作者Liu, Wen
作者单位
1.ShanghaiTech University, China
2.Tencent AI Lab
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Liu, Wen,Piao, Zhixin,Min, Jie,et al. Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis[C]:Institute of Electrical and Electronics Engineers Inc.,2019:5903-5912.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liu, Wen]的文章
[Piao, Zhixin]的文章
[Min, Jie]的文章
百度学术
百度学术中相似的文章
[Liu, Wen]的文章
[Piao, Zhixin]的文章
[Min, Jie]的文章
必应学术
必应学术中相似的文章
[Liu, Wen]的文章
[Piao, Zhixin]的文章
[Min, Jie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。