消息
×
loading..
Classifying and Comparing Approaches to Subspace Clustering with Missing Data
2019-10
会议录名称2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW)
ISSN2473-9936
页码669-677
发表状态已发表
DOI10.1109/ICCVW.2019.00081
摘要

In recent years, many methods have been proposed for the task of subspace clustering with missing data (SCMD), and its complementary problem, high-rank matrix completion (HRMC). Given incomplete data drawn from a union of subspaces, these methods aim to simultaneously cluster each data point and recover the unobserved entries. In this work, we review the current state of this literature. We organize the existing methods into five distinct families and discuss their relative strengths and weaknesses. This classification exposes some gaps in the current literature, which we fill by introducing a few natural extensions of prior methods. Finally, we provide a thorough and unbiased evaluation of representative methods on synthetic data. Our experiments demonstrate a clear advantage for alternating between projected zero-filled sparse subspace clustering, and per-group matrix completion. Understanding why this intuitive but heuristic method performs well is an open problem for future theoretical study.

关键词Clustering algorithms Optimization Task analysis Sparse matrices Computer vision Data science Prediction algorithms
会议地点Seoul, Korea (South)
会议日期27-28 Oct. 2019
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
原始文献类型Conferences
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/114791
专题信息科学与技术学院_PI研究组_Manolis Tsakiris组
作者单位
1.Johns Hopkins University
2.University of California Berkeley
3.ShanghaiTech University
推荐引用方式
GB/T 7714
Connor Lane,Ron Boger,Chong You,et al. Classifying and Comparing Approaches to Subspace Clustering with Missing Data[C],2019:669-677.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Connor Lane]的文章
[Ron Boger]的文章
[Chong You]的文章
百度学术
百度学术中相似的文章
[Connor Lane]的文章
[Ron Boger]的文章
[Chong You]的文章
必应学术
必应学术中相似的文章
[Connor Lane]的文章
[Ron Boger]的文章
[Chong You]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。