| |||||||
ShanghaiTech University Knowledge Management System
Density Map Regression Guided Detection Network for RGB-D Crowd Counting and Localization | |
2019-06 | |
会议录名称 | 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
![]() |
ISSN | 1063-6919 |
页码 | 1821-1830 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR.2019.00192 |
摘要 | To simultaneously estimate head counts and localize heads with bounding boxes, a regression guided detection network (RDNet) is proposed for RGB-D crowd counting. Specifically, to improve the robustness of detection-based approaches for small/tiny heads, we leverage density map to improve the head/non-head classification in detection network where density map serves as the probability of a pixel being a head. A depth-adaptive kernel that considers the variances in head sizes is also introduced to generate high-fidelity density map for more robust density map regression. Further, a depth-aware anchor is designed for better initialization of anchor sizes in detection framework. Then we use the bounding boxes whose sizes are estimated with depth to train our RDNet. The existing RGB-D datasets are too small and not suitable for performance evaluation on data-driven based approaches, we collect a large-scale RGB-D crowd counting dataset. Experiments on both our RGB-D dataset and the MICC RGB-D counting dataset show that our method achieves the best performance for RGB-D crowd counting and localization. Further, our method can be readily extended to RGB image based crowd counting and achieves comparable performance on the ShanghaiTech Part\_B dataset for both counting and localization. |
会议地点 | Long Beach, CA, USA |
会议日期 | 15-20 June 2019 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S ; CPCI |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods |
WOS记录号 | WOS:000529484001099 |
出版者 | IEEE COMPUTER SOC |
EI入藏号 | 20200508113504 |
原始文献类型 | Proceedings Paper |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/105103 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_高盛华组 信息科学与技术学院_硕士生 |
作者单位 | ShanghaiTech University |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Dongze Lian,Jing Li,Jia Zheng,et al. Density Map Regression Guided Detection Network for RGB-D Crowd Counting and Localization[C]:IEEE COMPUTER SOC,2019:1821-1830. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Dongze Lian]的文章 |
[Jing Li]的文章 |
[Jia Zheng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Dongze Lian]的文章 |
[Jing Li]的文章 |
[Jia Zheng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Dongze Lian]的文章 |
[Jing Li]的文章 |
[Jia Zheng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。