| |||||||
ShanghaiTech University Knowledge Management System
PPGNet: Learning Point-Pair Graph for Line Segment Detection | |
2019-06 | |
会议录名称 | 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
![]() |
ISSN | 1063-6919 |
页码 | 7098-7107 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR.2019.00727 |
摘要 | In this paper, we present a novel framework to detect line segments in man-made environments. Specifically, we propose to describe junctions, line segments and relationships between them with a simple graph, which is more structured and informative than end-point representation used in existing line segment detection methods. In order to extract a line segment graph from an image, we further introduce the PPGNet, a convolutional neural network that directly infers a graph from an image. We evaluate our method on published benchmarks including York Urban and Wireframe datasets. The results demonstrate that our method achieves satisfactory performance and generalizes well on all the benchmarks. The source code of our work is available at https://github.com/svip-lab/PPGNet. |
会议地点 | Long Beach, CA, USA |
会议日期 | 15-20 June 2019 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S ; CPCI |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods |
WOS记录号 | WOS:000542649300056 |
出版者 | IEEE Computer Society |
EI入藏号 | 20200508114554 |
WOS关键词 | JUNCTION DETECTION ; ACCURATE ; EXTRACTION |
原始文献类型 | Proceedings Paper |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/105102 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_公共科研平台_网络大数据平台 信息科学与技术学院_PI研究组_高盛华组 物质科学与技术学院_本科生 信息科学与技术学院_博士生 |
作者单位 | ShanghaiTech University |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Ziheng Zhang,Zhengxin Li,Ning Bi,et al. PPGNet: Learning Point-Pair Graph for Line Segment Detection[C]:IEEE Computer Society,2019:7098-7107. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。