消息
×
loading..
Dynamic Tuple Scheduling with Prediction for Data Stream Processing Systems
2019-12
会议录名称2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM)
ISSN1930-529X
页码1-6
发表状态已发表
DOI10.1109/GLOBECOM38437.2019.9013570
摘要

For data stream processing systems such as Apache Heron, workload imbalance across processing instances often causes significant system performance degradation. To mitigate such issues, Apache Heron leverages a naive throttling-based back-pressure scheme, which may lead to unexpected system disruption. This calls for a finer-grained control to distribute data stream units (tuples) between successive instances, a.k.a. tuple scheduling, which well adapts to data stream variations and workload discrepancy. Besides, the benefits of predictive scheduling to data stream processing systems still remain unexplored. In this paper, we formulate tuple scheduling problem as a stochastic network optimization problem, with careful choices in the granularity of system modeling and decision making. With non-trivial transformation, we decouple the problem into a series of online subproblems. By exploiting unique subproblem structure, we propose POTUS, an efficient, online, and distributed scheduling scheme that employs the power of predictive scheduling but requires only limited system dynamics to achieve a tunable trade-off between communication cost reduction and system queue stability. Theoretical analysis and simulations show that POTUS effectively shortens response time with mild-value of future information, even in the face of misprediction. Our solution is also applicable to other data stream processing systems.

关键词Fasteners Containers Time factors Dynamic scheduling Optimization Runtime
会议地点Waikoloa, HI, USA
会议日期9-13 Dec. 2019
URL查看原文
收录类别EI ; CPCI ; CPCI-S
语种英语
资助项目[19ZR1433900]
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20201208331168
EI主题词Cost reduction ; Decision making ; Economic and social effects ; Scheduling ; Stochastic systems
EI分类号Management:912.2 ; Systems Science:961 ; Social Sciences:971
原始文献类型Conferences
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/104345
专题科道书院
信息科学与技术学院_PI研究组_邵子瑜组
信息科学与技术学院_PI研究组_杨旸组
信息科学与技术学院_博士生
通讯作者Huang, Xi
作者单位
School of Information Science and Technology, ShanghaiTech University, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Huang, Xi,Shao, Ziyu,Yang, Yang. Dynamic Tuple Scheduling with Prediction for Data Stream Processing Systems[C]:Institute of Electrical and Electronics Engineers Inc.,2019:1-6.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Huang, Xi]的文章
[Shao, Ziyu]的文章
[Yang, Yang]的文章
百度学术
百度学术中相似的文章
[Huang, Xi]的文章
[Shao, Ziyu]的文章
[Yang, Yang]的文章
必应学术
必应学术中相似的文章
[Huang, Xi]的文章
[Shao, Ziyu]的文章
[Yang, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。