| |||||||
ShanghaiTech University Knowledge Management System
Dynamic Tuple Scheduling with Prediction for Data Stream Processing Systems | |
2019-12 | |
会议录名称 | 2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM)
![]() |
ISSN | 1930-529X |
页码 | 1-6 |
发表状态 | 已发表 |
DOI | 10.1109/GLOBECOM38437.2019.9013570 |
摘要 | For data stream processing systems such as Apache Heron, workload imbalance across processing instances often causes significant system performance degradation. To mitigate such issues, Apache Heron leverages a naive throttling-based back-pressure scheme, which may lead to unexpected system disruption. This calls for a finer-grained control to distribute data stream units (tuples) between successive instances, a.k.a. tuple scheduling, which well adapts to data stream variations and workload discrepancy. Besides, the benefits of predictive scheduling to data stream processing systems still remain unexplored. In this paper, we formulate tuple scheduling problem as a stochastic network optimization problem, with careful choices in the granularity of system modeling and decision making. With non-trivial transformation, we decouple the problem into a series of online subproblems. By exploiting unique subproblem structure, we propose POTUS, an efficient, online, and distributed scheduling scheme that employs the power of predictive scheduling but requires only limited system dynamics to achieve a tunable trade-off between communication cost reduction and system queue stability. Theoretical analysis and simulations show that POTUS effectively shortens response time with mild-value of future information, even in the face of misprediction. Our solution is also applicable to other data stream processing systems. |
关键词 | Fasteners Containers Time factors Dynamic scheduling Optimization Runtime |
会议地点 | Waikoloa, HI, USA |
会议日期 | 9-13 Dec. 2019 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
语种 | 英语 |
资助项目 | [19ZR1433900] |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20201208331168 |
EI主题词 | Cost reduction ; Decision making ; Economic and social effects ; Scheduling ; Stochastic systems |
EI分类号 | Management:912.2 ; Systems Science:961 ; Social Sciences:971 |
原始文献类型 | Conferences |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/104345 |
专题 | 科道书院 信息科学与技术学院_PI研究组_邵子瑜组 信息科学与技术学院_PI研究组_杨旸组 信息科学与技术学院_博士生 |
通讯作者 | Huang, Xi |
作者单位 | School of Information Science and Technology, ShanghaiTech University, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Huang, Xi,Shao, Ziyu,Yang, Yang. Dynamic Tuple Scheduling with Prediction for Data Stream Processing Systems[C]:Institute of Electrical and Electronics Engineers Inc.,2019:1-6. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Huang, Xi]的文章 |
[Shao, Ziyu]的文章 |
[Yang, Yang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Huang, Xi]的文章 |
[Shao, Ziyu]的文章 |
[Yang, Yang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Huang, Xi]的文章 |
[Shao, Ziyu]的文章 |
[Yang, Yang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。