| |||||||
ShanghaiTech University Knowledge Management System
Task Offloading in NOMA-Based Fog Computing Networks: A Deep Q-Learning Approach | |
2019-12 | |
会议录名称 | 2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM)
![]() |
ISSN | 1930-529X |
页码 | 1-6 |
发表状态 | 已发表 |
DOI | 10.1109/GLOBECOM38437.2019.9013841 |
摘要 | Fog computing (FC) has the potential to enable computation-intensive applications for the next generation wireless networks. In parallel with the development of FC, nonorthogonal multiple access (NOMA) has been recognized as a promising solution to improve the spectrum efficiency. In this paper, a NOMA-based FC system is considered, where multiple task nodes perform task scheduling via NOMA to a helper node, the helper node with abundant computation resource is required to compute the computation task from the task nodes. We formulate a joint task scheduling, computational resource allocation, and power allocation problem with an objective to minimize the sum cost (i.e., delay and energy consumptions for all task nodes) realizing energy-delay tradeoff. It is challenging to obtain an optimal policy for such a combinatorial optimization problem. To this end, we propose an online learning-based optimization framework to tackle this problem. Simulation results show that the proposed scheme significantly reduces the sum cost compared to the baselines. |
关键词 | Task analysis Delays Resource management NOMA Processor scheduling Energy consumption Computational modeling |
会议地点 | Waikoloa, HI, USA |
会议日期 | 9-13 Dec. 2019 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
资助项目 | [2018YFB1801105] ; National Natural Science Foundation of China[61801463] ; National Natural Science Foundation of China[] |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20201208332097 |
EI主题词 | Combinatorial optimization ; Deep learning ; Multitasking ; Reinforcement learning ; Scheduling algorithms |
EI分类号 | Digital Computers and Systems:722.4 ; Artificial Intelligence:723.4 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 |
原始文献类型 | Conferences |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/102271 |
专题 | 科道书院 信息科学与技术学院_PI研究组_罗喜良组 信息科学与技术学院_PI研究组_杨旸组 信息科学与技术学院_PI研究组_周勇组 |
通讯作者 | Wang, Kunlun |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, China 2.Shanghai Institute of Fog Computing Technology (SHIFT), China 3.National Key Laboratory of Science and Technology on Communications, UESTC, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Wang, Kunlun,Zhou, Yong,Yang, Yang,et al. Task Offloading in NOMA-Based Fog Computing Networks: A Deep Q-Learning Approach[C]:Institute of Electrical and Electronics Engineers Inc.,2019:1-6. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。