消息
×
loading..
Task Offloading in NOMA-Based Fog Computing Networks: A Deep Q-Learning Approach
2019-12
会议录名称2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM)
ISSN1930-529X
页码1-6
发表状态已发表
DOI10.1109/GLOBECOM38437.2019.9013841
摘要

Fog computing (FC) has the potential to enable computation-intensive applications for the next generation wireless networks. In parallel with the development of FC, nonorthogonal multiple access (NOMA) has been recognized as a promising solution to improve the spectrum efficiency. In this paper, a NOMA-based FC system is considered, where multiple task nodes perform task scheduling via NOMA to a helper node, the helper node with abundant computation resource is required to compute the computation task from the task nodes. We formulate a joint task scheduling, computational resource allocation, and power allocation problem with an objective to minimize the sum cost (i.e., delay and energy consumptions for all task nodes) realizing energy-delay tradeoff. It is challenging to obtain an optimal policy for such a combinatorial optimization problem. To this end, we propose an online learning-based optimization framework to tackle this problem. Simulation results show that the proposed scheme significantly reduces the sum cost compared to the baselines.

关键词Task analysis Delays Resource management NOMA Processor scheduling Energy consumption Computational modeling
会议地点Waikoloa, HI, USA
会议日期9-13 Dec. 2019
URL查看原文
收录类别EI ; CPCI ; CPCI-S
资助项目[2018YFB1801105] ; National Natural Science Foundation of China[61801463] ; National Natural Science Foundation of China[]
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20201208332097
EI主题词Combinatorial optimization ; Deep learning ; Multitasking ; Reinforcement learning ; Scheduling algorithms
EI分类号Digital Computers and Systems:722.4 ; Artificial Intelligence:723.4 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
原始文献类型Conferences
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/102271
专题科道书院
信息科学与技术学院_PI研究组_罗喜良组
信息科学与技术学院_PI研究组_杨旸组
信息科学与技术学院_PI研究组_周勇组
通讯作者Wang, Kunlun
作者单位
1.School of Information Science and Technology, ShanghaiTech University, China
2.Shanghai Institute of Fog Computing Technology (SHIFT), China
3.National Key Laboratory of Science and Technology on Communications, UESTC, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Wang, Kunlun,Zhou, Yong,Yang, Yang,et al. Task Offloading in NOMA-Based Fog Computing Networks: A Deep Q-Learning Approach[C]:Institute of Electrical and Electronics Engineers Inc.,2019:1-6.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Kunlun]的文章
[Zhou, Yong]的文章
[Yang, Yang]的文章
百度学术
百度学术中相似的文章
[Wang, Kunlun]的文章
[Zhou, Yong]的文章
[Yang, Yang]的文章
必应学术
必应学术中相似的文章
[Wang, Kunlun]的文章
[Zhou, Yong]的文章
[Yang, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。