Cascaded ConvLSTMs Using Semantically-Coherent Data Synthesis for Video Object Segmentation
2019
发表期刊IEEE ACCESS (IF:3.4[JCR-2023],3.7[5-Year])
ISSN2169-3536
卷号7页码:132120-132129
发表状态已发表
DOI10.1109/ACCESS.2019.2940768
摘要This paper proposes a simple yet effective and efficient method for video object segmentation. Most existing methods take the color image and the optical flow as input for discovering the salient object in terms of appearance and motion. We instead leverage a ResNet backbone as an appearance-characterization encoder for each frame at different scales, and a series of Convolutional Long Short-Term Memory units (ConvLSTMs) as a motion-modeling decoder at each corresponding scale. By imposing supervision over each scale, such modules can well tackle all scales of a moving object with an inevitable scale variance over time. Instead of following a Condition Random Fields based post-processing, we use a more effective and efficient cascade module to refine the model predictions. Most existing video object segmentation datasets have limited sizes because it is expensive and time-consuming to obtain pixel-wise annotations. To overcome the data-insufficiency issue when training the deep network, we propose a semantically-coherent data synthesis strategy to augment training sequences without any efforts. Extensive experiments and ablation studies on the DAVIS 2016 dataset validate our proposed method. Furthermore, our method without the cascade module achieves a real-time speed of 26 fps on a single GPU.
关键词Object segmentation Optical imaging Decoding Training Optical network units Video sequences Adaptive optics
URL查看原文
收录类别SCI ; SCIE ; EI
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000498627400003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20200308052927
EI主题词Brain ; Convolution ; Long short-term memory ; Motion compensation
EI分类号Biomedical Engineering:461.1 ; Information Theory and Signal Processing:716.1
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/102119
专题信息科学与技术学院_硕士生
信息科学与技术学院_博士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Jia Zheng,Weixin Luo,Zhixin Piao. Cascaded ConvLSTMs Using Semantically-Coherent Data Synthesis for Video Object Segmentation[J]. IEEE ACCESS,2019,7:132120-132129.
APA Jia Zheng,Weixin Luo,&Zhixin Piao.(2019).Cascaded ConvLSTMs Using Semantically-Coherent Data Synthesis for Video Object Segmentation.IEEE ACCESS,7,132120-132129.
MLA Jia Zheng,et al."Cascaded ConvLSTMs Using Semantically-Coherent Data Synthesis for Video Object Segmentation".IEEE ACCESS 7(2019):132120-132129.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jia Zheng]的文章
[Weixin Luo]的文章
[Zhixin Piao]的文章
百度学术
百度学术中相似的文章
[Jia Zheng]的文章
[Weixin Luo]的文章
[Zhixin Piao]的文章
必应学术
必应学术中相似的文章
[Jia Zheng]的文章
[Weixin Luo]的文章
[Zhixin Piao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@ACCESS.2019.2940768.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。