ShanghaiTech University Knowledge Management System
Cascaded ConvLSTMs Using Semantically-Coherent Data Synthesis for Video Object Segmentation | |
2019 | |
发表期刊 | IEEE ACCESS (IF:3.4[JCR-2023],3.7[5-Year]) |
ISSN | 2169-3536 |
卷号 | 7页码:132120-132129 |
发表状态 | 已发表 |
DOI | 10.1109/ACCESS.2019.2940768 |
摘要 | This paper proposes a simple yet effective and efficient method for video object segmentation. Most existing methods take the color image and the optical flow as input for discovering the salient object in terms of appearance and motion. We instead leverage a ResNet backbone as an appearance-characterization encoder for each frame at different scales, and a series of Convolutional Long Short-Term Memory units (ConvLSTMs) as a motion-modeling decoder at each corresponding scale. By imposing supervision over each scale, such modules can well tackle all scales of a moving object with an inevitable scale variance over time. Instead of following a Condition Random Fields based post-processing, we use a more effective and efficient cascade module to refine the model predictions. Most existing video object segmentation datasets have limited sizes because it is expensive and time-consuming to obtain pixel-wise annotations. To overcome the data-insufficiency issue when training the deep network, we propose a semantically-coherent data synthesis strategy to augment training sequences without any efforts. Extensive experiments and ablation studies on the DAVIS 2016 dataset validate our proposed method. Furthermore, our method without the cascade module achieves a real-time speed of 26 fps on a single GPU. |
关键词 | Object segmentation Optical imaging Decoding Training Optical network units Video sequences Adaptive optics |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000498627400003 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20200308052927 |
EI主题词 | Brain ; Convolution ; Long short-term memory ; Motion compensation |
EI分类号 | Biomedical Engineering:461.1 ; Information Theory and Signal Processing:716.1 |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/102119 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Jia Zheng,Weixin Luo,Zhixin Piao. Cascaded ConvLSTMs Using Semantically-Coherent Data Synthesis for Video Object Segmentation[J]. IEEE ACCESS,2019,7:132120-132129. |
APA | Jia Zheng,Weixin Luo,&Zhixin Piao.(2019).Cascaded ConvLSTMs Using Semantically-Coherent Data Synthesis for Video Object Segmentation.IEEE ACCESS,7,132120-132129. |
MLA | Jia Zheng,et al."Cascaded ConvLSTMs Using Semantically-Coherent Data Synthesis for Video Object Segmentation".IEEE ACCESS 7(2019):132120-132129. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。