消息
×
loading..
Pose2Body: Pose-guided human parts segmentation
2019
会议录名称2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME 2019
ISSN1945788X
卷号2019-July
页码640-645
发表状态已发表
DOI10.1109/ICME.2019.00116
摘要

Reliable human parts segmentation on 2D images plays an important role in many human-centric computer vision tasks. While significant achievements have been made on human pose estimation, the performance on human parts segmentation remains low. In this paper, we present a novel technique that we call Pose2Body that robustly conducts human parts segmentation based on the pose estimation results. We partition an image into superpixels and set out to assign a segment label to each superpixel most consistent with the pose. We design special feature vectors for every superpixel-label assignment as well as superpixel-superpixel pairs and model optimal labeling as to solve for a conditional random field (CRF). Comprehensive experiments show that our technique achieves substantial improvements over the state-of-the-art solutions.
© 2019 IEEE.

会议地点Shanghai, China
会议日期8-12 July 2019
URL查看原文
收录类别EI ; CPCI-S ; CPCI
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000501820600108
出版者IEEE Computer Society
EI入藏号20193407349321
EI主题词Random processes ; Semantics ; Superpixels
EI分类号Probability Theory:922.1
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/89388
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
共同第一作者Li, Zhong
通讯作者Li, Zhong
作者单位
1.Shanghai Engineering Research Center of Intelligent Vision and Imaging, School of Information Science and Technology ShanghaiTech University
2.University of Delaware, Newark, United States
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Chen, Xin,Li, Zhong,Zhou, Wangyiteng,et al. Pose2Body: Pose-guided human parts segmentation[C]:IEEE Computer Society,2019:640-645.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Xin]的文章
[Li, Zhong]的文章
[Zhou, Wangyiteng]的文章
百度学术
百度学术中相似的文章
[Chen, Xin]的文章
[Li, Zhong]的文章
[Zhou, Wangyiteng]的文章
必应学术
必应学术中相似的文章
[Chen, Xin]的文章
[Li, Zhong]的文章
[Zhou, Wangyiteng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。