| |||||||
ShanghaiTech University Knowledge Management System
Pose2Body: Pose-guided human parts segmentation | |
2019 | |
会议录名称 | 2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME 2019 |
ISSN | 1945788X |
卷号 | 2019-July |
页码 | 640-645 |
发表状态 | 已发表 |
DOI | 10.1109/ICME.2019.00116 |
摘要 | Reliable human parts segmentation on 2D images plays an important role in many human-centric computer vision tasks. While significant achievements have been made on human pose estimation, the performance on human parts segmentation remains low. In this paper, we present a novel technique that we call Pose2Body that robustly conducts human parts segmentation based on the pose estimation results. We partition an image into superpixels and set out to assign a segment label to each superpixel most consistent with the pose. We design special feature vectors for every superpixel-label assignment as well as superpixel-superpixel pairs and model optimal labeling as to solve for a conditional random field (CRF). Comprehensive experiments show that our technique achieves substantial improvements over the state-of-the-art solutions. |
会议地点 | Shanghai, China |
会议日期 | 8-12 July 2019 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S ; CPCI |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000501820600108 |
出版者 | IEEE Computer Society |
EI入藏号 | 20193407349321 |
EI主题词 | Random processes ; Semantics ; Superpixels |
EI分类号 | Probability Theory:922.1 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/89388 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 |
共同第一作者 | Li, Zhong |
通讯作者 | Li, Zhong |
作者单位 | 1.Shanghai Engineering Research Center of Intelligent Vision and Imaging, School of Information Science and Technology ShanghaiTech University 2.University of Delaware, Newark, United States |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Chen, Xin,Li, Zhong,Zhou, Wangyiteng,et al. Pose2Body: Pose-guided human parts segmentation[C]:IEEE Computer Society,2019:640-645. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。