ShanghaiTech University Knowledge Management System
RGBD Based Gaze Estimation via Multi-Task CNN | |
2019 | |
会议录名称 | THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE |
页码 | 2488-2495 |
发表状态 | 已发表 |
摘要 | This paper tackles RGBD based gaze estimation with Convolutional Neural Networks (CNNs). Specifically, we propose to decompose gaze point estimation into eyeball pose, head pose, and 3D eye position estimation. Compared with RGB image-based gaze tracking, having depth modality helps to facilitate head pose estimation and 3D eye position estimation. The captured depth image, however, usually contains noise and black holes which noticeably hamper gaze tracking. Thus we propose a CNN-based multi-task learning framework to simultaneously refine depth images and predict gaze points. We utilize a generator network for depth image generation with a Generative Neural Network (GAN), where the generator network is partially shared by both the gaze tracking network and GAN-based depth synthesizing. By optimizing the whole network simultaneously, depth image synthesis improves gaze point estimation and vice versa. Since the only existing RGBD dataset (EYEDIAP) is too small, we build a large-scale RGBD gaze tracking dataset for performance evaluation. As far as we know, it is the largest RGBD gaze dataset in terms of the number of participants. Comprehensive experiments demonstrate that our method outperforms existing methods by a large margin on both our dataset and the EYEDIAP dataset. |
会议录编者/会议主办者 | Association for the Advancement of Artificial Intelligence |
关键词 | Generative adversarial networks Large dataset Image enhancement Neural networks Black holes Depth image Eye position Gaze estimation Gaze point estimations Gaze tracking Head Pose Estimation Large margins |
会议名称 | 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 |
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA |
会议地点 | Honolulu, HI, United states |
会议日期 | January 27, 2019 - February 1, 2019 |
收录类别 | CPCI ; CPCI-S ; EI |
语种 | 英语 |
资助项目 | NSFC[61502304] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000485292602062 |
出版者 | ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE |
EI入藏号 | 20203509101183 |
EI主题词 | Eye tracking |
EI分类号 | 723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence |
原始文献类型 | Proceedings Paper |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/80215 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_PI研究组_高盛华组 信息科学与技术学院_博士生 |
通讯作者 | Gao, Shenghua |
作者单位 | 1.ShanghaiTech Univ, Shanghai, Peoples R China 2.Nanjing Univ Sci & Technol, Nanjing, Jiangsu, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Lian, Dongze,Zhang, Ziheng,Luo, Weixin,et al. RGBD Based Gaze Estimation via Multi-Task CNN[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2019:2488-2495. |
条目包含的文件 | ||||||
条目无相关文件。 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。