RGBD Based Gaze Estimation via Multi-Task CNN
2019
会议录名称THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE
页码2488-2495
发表状态已发表
摘要This paper tackles RGBD based gaze estimation with Convolutional Neural Networks (CNNs). Specifically, we propose to decompose gaze point estimation into eyeball pose, head pose, and 3D eye position estimation. Compared with RGB image-based gaze tracking, having depth modality helps to facilitate head pose estimation and 3D eye position estimation. The captured depth image, however, usually contains noise and black holes which noticeably hamper gaze tracking. Thus we propose a CNN-based multi-task learning framework to simultaneously refine depth images and predict gaze points. We utilize a generator network for depth image generation with a Generative Neural Network (GAN), where the generator network is partially shared by both the gaze tracking network and GAN-based depth synthesizing. By optimizing the whole network simultaneously, depth image synthesis improves gaze point estimation and vice versa. Since the only existing RGBD dataset (EYEDIAP) is too small, we build a large-scale RGBD gaze tracking dataset for performance evaluation. As far as we know, it is the largest RGBD gaze dataset in terms of the number of participants. Comprehensive experiments demonstrate that our method outperforms existing methods by a large margin on both our dataset and the EYEDIAP dataset.
会议录编者/会议主办者Association for the Advancement of Artificial Intelligence
关键词Generative adversarial networks Large dataset Image enhancement Neural networks Black holes Depth image Eye position Gaze estimation Gaze point estimations Gaze tracking Head Pose Estimation Large margins
会议名称33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
出版地2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
会议地点Honolulu, HI, United states
会议日期January 27, 2019 - February 1, 2019
收录类别CPCI ; CPCI-S ; EI
语种英语
资助项目NSFC[61502304]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000485292602062
出版者ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE
EI入藏号20203509101183
EI主题词Eye tracking
EI分类号723.2 Data Processing and Image Processing ; 723.4 Artificial Intelligence
原始文献类型Proceedings Paper
引用统计
被引频次:25[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/80215
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_PI研究组_高盛华组
信息科学与技术学院_博士生
通讯作者Gao, Shenghua
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Nanjing Univ Sci & Technol, Nanjing, Jiangsu, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Lian, Dongze,Zhang, Ziheng,Luo, Weixin,et al. RGBD Based Gaze Estimation via Multi-Task CNN[C]//Association for the Advancement of Artificial Intelligence. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2019:2488-2495.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lian, Dongze]的文章
[Zhang, Ziheng]的文章
[Luo, Weixin]的文章
百度学术
百度学术中相似的文章
[Lian, Dongze]的文章
[Zhang, Ziheng]的文章
[Luo, Weixin]的文章
必应学术
必应学术中相似的文章
[Lian, Dongze]的文章
[Zhang, Ziheng]的文章
[Luo, Weixin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。