Exact muffin tin orbital based first-principles method for electronic-structure and electron-transport simulation of device materials
2019-08-16
发表期刊PHYSICAL REVIEW B
ISSN2469-9950
卷号100期号:7
发表状态已发表
DOI10.1103/PhysRevB.100.075134
摘要The exact muffin tin orbital (EMTO) method features high efficiency and accuracy for first-principles simulations with density functional theory. In this paper we report our implementation of the EMTO method for electronic-structure and quantum transport simulation of device materials. We consider a device-material structure with a central device region in contact with different semi-infinite electrodes. Based on the Green's function method, the infinite device, nonperiodic in transport direction, is transformed into a calculable finite material system by treating the semi-infinite electrodes with electrode self-energies, and the Green's function of the device region is calculated with an efficient recursive technique. In the present implementation we adopt the spherical cell approximation to treat the electrostatics, and we solve the electrostatic potential of the finite device region by enforcing the boundary conditions to the known potential of electrode materials. The coherent potential approximation is incorporated for treating the atomic disorders inevitable in realistic materials, and the effects of multiple disorder scattering on electron transport are accounted for by vertex correction for simulating disordered electronic devices. To demonstrate the capability of the present implementation, we calculate the monolayer two-dimensional material MoS2 and black phosphorus, and study the spin-dependent tunneling in the Fe/MgO/Fe magnetic tunneling junction. We find the EMTO electronic structures of the calculated systems agree well with the results of the projector augmented wave method. The EMTO transport simulation produces the important spin-filtering effect of the Fe/MgO/Fe junction and the important influence of the interfacial disorders on the spin-dependent tunneling, agreeing well with previous theoretical and experimental studies. The implementation of the EMTO based device simulator provides an effective simulation tool for simulating both ordered and disordered device materials, extending the capability for theoretical design of electronic devices from first principles.
收录类别SCI ; SCIE ; EI
语种英语
资助项目NSFC[11874265]
WOS研究方向Materials Science ; Physics
WOS类目Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号WOS:000481468400002
出版者AMER PHYSICAL SOC
EI主题词Coherent scattering ; Density functional theory ; Electrodes ; Electron transport properties ; Electron tunneling ; Electronic structure ; Electrostatics ; Layered semiconductors ; Molybdenum compounds ; Quantum chemistry ; Sulfur compounds ; Thermoelectric equipment ; Tin
WOS关键词ROOM-TEMPERATURE ; DENSITY ; MAGNETORESISTANCE ; COHERENT ; ENERGY ; SURFACES ; ALLOYS
原始文献类型Article
引用统计
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/64560
专题物质科学与技术学院_PI研究组_柯友启组
物质科学与技术学院_硕士生
物质科学与技术学院_博士生
通讯作者Zhang, Qingyun; Ke, Youqi
作者单位
ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
第一作者单位物质科学与技术学院
通讯作者单位物质科学与技术学院
第一作者的第一单位物质科学与技术学院
推荐引用方式
GB/T 7714
Zhang, Qingyun,Yan, Jiawei,Zhang, Yu,et al. Exact muffin tin orbital based first-principles method for electronic-structure and electron-transport simulation of device materials[J]. PHYSICAL REVIEW B,2019,100(7).
APA Zhang, Qingyun,Yan, Jiawei,Zhang, Yu,&Ke, Youqi.(2019).Exact muffin tin orbital based first-principles method for electronic-structure and electron-transport simulation of device materials.PHYSICAL REVIEW B,100(7).
MLA Zhang, Qingyun,et al."Exact muffin tin orbital based first-principles method for electronic-structure and electron-transport simulation of device materials".PHYSICAL REVIEW B 100.7(2019).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Qingyun]的文章
[Yan, Jiawei]的文章
[Zhang, Yu]的文章
百度学术
百度学术中相似的文章
[Zhang, Qingyun]的文章
[Yan, Jiawei]的文章
[Zhang, Yu]的文章
必应学术
必应学术中相似的文章
[Zhang, Qingyun]的文章
[Yan, Jiawei]的文章
[Zhang, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。