ShanghaiTech University Knowledge Management System
The Characteristically Slow Proton Transfer Coupled to Platinum Oxidation in Alkaline Polyelectrolyte as Elucidated at the Molecular Level | |
2025-04-01 | |
发表期刊 | ACS CENTRAL SCIENCE (IF:12.7[JCR-2023],15.8[5-Year]) |
ISSN | 2374-7943 |
EISSN | 2374-7951 |
发表状态 | 已发表 |
DOI | 10.1021/acscentsci.5c00124 |
摘要 | The proton transfer in alkaline polyelectrolyte membrane (APEM)/electrode interfaces is significantly coupled to the electrochemical reactions in energy conversion and green synthesis. The OH- in APEM/electrode interfaces is characteristically without cations in the surroundings but ambiguous in proton-transfer-coupled electrochemical reactions at the molecular level. Here we employed in situ electrochemical surface-enhanced Raman spectroscopy and high-level quantum-chemical calculations to elucidate the proton transfer in the APEM/Pt interface by using electrochemical Pt oxidation as an indicator. To manifest the characters in APEM, a comparison to that in conventional NaOH solution was made. With the similar electron transfer of Pt oxidation in both APEM and NaOH, the driving force and rate of proton transfer were distinguished respectively according to the onset oxidation potential and morphology of Pt nanoparticles, which suggested the slow proton transfer in an APEM/Pt interface. The similar vibrational fingerprints of subsurface oxygenated intermediates in both APEM and NaOH solution evidenced the characteristically slow proton transfer in an APEM/Pt interface. The high-level quantum-chemical calculations combined with molecular dynamics simulation showed that the driving force of proton transfer in APEM was reduced since OH- was coordinated by more water molecules in its hydration shell. The characteristically slow interfacial proton transfer may be universally coupled to electrochemical reactions in devices with APEMs. |
关键词 | Electrochemical sensors Electrolytic cells Green Synthesis Ligands Alkalines Electrochemical reactions Electrode interface Membrane electrodes Molecular levels NaOH solutions OH - Polyelectrolyte membranes Quantum chemical calculations Quantum-chemical calculation |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[ |
WOS研究方向 | Chemistry |
WOS类目 | Chemistry, Multidisciplinary |
WOS记录号 | WOS:001479250100001 |
出版者 | AMER CHEMICAL SOC |
EI入藏号 | 20251818355600 |
EI主题词 | Electrochemical oxidation |
EI分类号 | 101.8 Biosensing Technology ; 732.2 Control Instrumentation ; 801 Chemistry ; 801.3.1 Electrochemistry ; 802.2 Chemical Reactions ; 805.1 Biochemical Engineering ; 942.2 Miscellaneous Devices, Equipment and Components ; 1501 Sustainability |
原始文献类型 | Article in Press |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/527111 |
专题 | 物质科学与技术学院 物质科学与技术学院_PI研究组_杨波组 物质科学与技术学院_PI研究组_黄逸凡组 物质科学与技术学院_硕士生 物质科学与技术学院_博士生 大科学中心_公共科研平台_大科学装置建设部 |
通讯作者 | Liu, Zhi; Yang, Bo; Huang, Yi-Fan |
作者单位 | 1.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China 2.Chinese Acad Sci, State Key Lab Funct Mat Informat, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China 3.Shanghaitech Univ, Ctr Transformat Sci, Shanghai 201210, Peoples R China |
第一作者单位 | 物质科学与技术学院 |
通讯作者单位 | 物质科学与技术学院; 上海科技大学 |
第一作者的第一单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Huang, Mo-Li,Ling, Wenhui,Wang, Zhangrui,et al. The Characteristically Slow Proton Transfer Coupled to Platinum Oxidation in Alkaline Polyelectrolyte as Elucidated at the Molecular Level[J]. ACS CENTRAL SCIENCE,2025. |
APA | Huang, Mo-Li.,Ling, Wenhui.,Wang, Zhangrui.,Lu, Yang.,Shen, Hong-Ning.,...&Huang, Yi-Fan.(2025).The Characteristically Slow Proton Transfer Coupled to Platinum Oxidation in Alkaline Polyelectrolyte as Elucidated at the Molecular Level.ACS CENTRAL SCIENCE. |
MLA | Huang, Mo-Li,et al."The Characteristically Slow Proton Transfer Coupled to Platinum Oxidation in Alkaline Polyelectrolyte as Elucidated at the Molecular Level".ACS CENTRAL SCIENCE (2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。