ShanghaiTech University Knowledge Management System
A deep learning approach for quantifying CT perfusion parameters in stroke | |
2025-05-30 | |
发表期刊 | BIOMEDICAL PHYSICS AND ENGINEERING EXPRESS (IF:1.3[JCR-2023],1.3[5-Year]) |
ISSN | 2057-1976 |
EISSN | 2057-1976 |
卷号 | 11期号:3 |
发表状态 | 已发表 |
DOI | 10.1088/2057-1976/adc9b6 |
摘要 | Objective. Computed tomography perfusion (CTP) imaging is widely used for assessing acute ischemic stroke. However, conventional methods for quantifying CTP images, such as singular value decomposition (SVD), often lead to oscillations in the estimated residue function and underestimation of tissue perfusion. In addition, the use of global arterial input function (AIF) potentially leads to erroneous parameter estimates. We aim to develop a method for accurately estimating physiological parameters from CTP images. Approach. We introduced a Transformer-based network to learn voxel-wise temporal features of CTP images. With global AIF and concentration time curve (CTC) of brain tissue as inputs, the network estimated local AIF and flow-scaled residue function. The derived parameters, including cerebral blood flow (CBF) and bolus arrival delay (BAD), were validated on both simulated and patient data (ISLES18 dataset), and were compared with multiple SVD-based methods, including standard SVD (sSVD), block-circulant SVD (cSVD) and oscillation-index SVD (oSVD). Main results. On data simulating multiple scenarios, local AIF estimated by the proposed method correlated with true AIF with a coefficient of 0.97 ± 0.04 (P −1, and estimated BAD with a mean error of 0.51 s; the latter two errors were significantly lower than those of the SVD-based methods (P −1 or 39.33% and 8.55 ml/100 g min−1 or 57.73% (P © 2025 The Author(s). Published by IOP Publishing Ltd. |
关键词 | Brain Physiological models Acute ischemic stroke Arterial input function Cerebral blood flow CT perfusion imaging Deep learning Patient data Perfusion images Residue functions Singular values Value decomposition |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Physics |
EI入藏号 | 20251718275077 |
EI主题词 | Mean square error |
EI分类号 | 101.1 Biomedical Engineering ; 1202.2 Mathematical Statistics |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/523914 |
专题 | 生物医学工程学院 信息科学与技术学院_硕士生 生物医学工程学院_PI研究组_张雷组(生医工) 生物医学工程学院_PI研究组_宗小鹏组 |
作者单位 | 1.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; 2.United Imaging Healthcare Group, Shanghai, China; 3.State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China; 4.Shanghai Clinical Research and Trial Center, Shanghai, China |
第一作者单位 | 生物医学工程学院 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Zeng, Wanning,Li, Yang,Zhang, Jeff L.,et al. A deep learning approach for quantifying CT perfusion parameters in stroke[J]. BIOMEDICAL PHYSICS AND ENGINEERING EXPRESS,2025,11(3). |
APA | Zeng, Wanning,Li, Yang,Zhang, Jeff L.,Chen, Tong,Wu, Ke,&Zong, Xiaopeng.(2025).A deep learning approach for quantifying CT perfusion parameters in stroke.BIOMEDICAL PHYSICS AND ENGINEERING EXPRESS,11(3). |
MLA | Zeng, Wanning,et al."A deep learning approach for quantifying CT perfusion parameters in stroke".BIOMEDICAL PHYSICS AND ENGINEERING EXPRESS 11.3(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。