A deep learning approach for quantifying CT perfusion parameters in stroke
2025-05-30
发表期刊BIOMEDICAL PHYSICS AND ENGINEERING EXPRESS (IF:1.3[JCR-2023],1.3[5-Year])
ISSN2057-1976
EISSN2057-1976
卷号11期号:3
发表状态已发表
DOI10.1088/2057-1976/adc9b6
摘要

Objective. Computed tomography perfusion (CTP) imaging is widely used for assessing acute ischemic stroke. However, conventional methods for quantifying CTP images, such as singular value decomposition (SVD), often lead to oscillations in the estimated residue function and underestimation of tissue perfusion. In addition, the use of global arterial input function (AIF) potentially leads to erroneous parameter estimates. We aim to develop a method for accurately estimating physiological parameters from CTP images. Approach. We introduced a Transformer-based network to learn voxel-wise temporal features of CTP images. With global AIF and concentration time curve (CTC) of brain tissue as inputs, the network estimated local AIF and flow-scaled residue function. The derived parameters, including cerebral blood flow (CBF) and bolus arrival delay (BAD), were validated on both simulated and patient data (ISLES18 dataset), and were compared with multiple SVD-based methods, including standard SVD (sSVD), block-circulant SVD (cSVD) and oscillation-index SVD (oSVD). Main results. On data simulating multiple scenarios, local AIF estimated by the proposed method correlated with true AIF with a coefficient of 0.97 ± 0.04 (P −1, and estimated BAD with a mean error of 0.51 s; the latter two errors were significantly lower than those of the SVD-based methods (P −1 or 39.33% and 8.55 ml/100 g min−1 or 57.73% (P © 2025 The Author(s). Published by IOP Publishing Ltd.

关键词Brain Physiological models Acute ischemic stroke Arterial input function Cerebral blood flow CT perfusion imaging Deep learning Patient data Perfusion images Residue functions Singular values Value decomposition
收录类别EI
语种英语
出版者Institute of Physics
EI入藏号20251718275077
EI主题词Mean square error
EI分类号101.1 Biomedical Engineering ; 1202.2 Mathematical Statistics
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/523914
专题生物医学工程学院
信息科学与技术学院_硕士生
生物医学工程学院_PI研究组_张雷组(生医工)
生物医学工程学院_PI研究组_宗小鹏组
作者单位
1.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China;
2.United Imaging Healthcare Group, Shanghai, China;
3.State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China;
4.Shanghai Clinical Research and Trial Center, Shanghai, China
第一作者单位生物医学工程学院
第一作者的第一单位生物医学工程学院
推荐引用方式
GB/T 7714
Zeng, Wanning,Li, Yang,Zhang, Jeff L.,et al. A deep learning approach for quantifying CT perfusion parameters in stroke[J]. BIOMEDICAL PHYSICS AND ENGINEERING EXPRESS,2025,11(3).
APA Zeng, Wanning,Li, Yang,Zhang, Jeff L.,Chen, Tong,Wu, Ke,&Zong, Xiaopeng.(2025).A deep learning approach for quantifying CT perfusion parameters in stroke.BIOMEDICAL PHYSICS AND ENGINEERING EXPRESS,11(3).
MLA Zeng, Wanning,et al."A deep learning approach for quantifying CT perfusion parameters in stroke".BIOMEDICAL PHYSICS AND ENGINEERING EXPRESS 11.3(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zeng, Wanning]的文章
[Li, Yang]的文章
[Zhang, Jeff L.]的文章
百度学术
百度学术中相似的文章
[Zeng, Wanning]的文章
[Li, Yang]的文章
[Zhang, Jeff L.]的文章
必应学术
必应学术中相似的文章
[Zeng, Wanning]的文章
[Li, Yang]的文章
[Zhang, Jeff L.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。