Automated wavefunction identification and performance prediction for interband cascade lasers using neural networks
2025-05-12
发表期刊JOURNAL OF PHYSICS D-APPLIED PHYSICS (IF:3.1[JCR-2023],3.0[5-Year])
ISSN0022-3727
EISSN1361-6463
卷号58期号:19
发表状态已发表
DOI10.1088/1361-6463/adc749
摘要

The interband cascade laser (ICL) represents a significant class of mid-infrared lasers, offering valuable applications across a range of scientific and technological domains. The conventional approach to designing ICL relies on the expertise of the designers and extensive simulation tests, which is time-consuming and restricts the flexibility of the design process. In this paper, we present an automated wavefunction identification program that rapidly and accurately identifies key wavefunctions in ICL band diagrams using neural networks (NNs), achieving an area under curve of greater than 90%. Based on the results of the automatic identification, a NN model is employed to predict the key performance metrics of ICL. The model focuses on transition energies and overlap of electron and hole wavefunctions in the W-type active region, as well as energy level differences D1 and D2 between electron and hole wave functions in the injector. By employing automated hyperparameter optimization, a mean square error of 10-4 was attained after 100 epochs, with high R-squared values of 0.994, 0.946, 0.947 and 0.982 for the transition energy, D1, D2 and overlap. Moreover, it takes only 12 s for the trained NN to obtain the results of 2000 structures, which is about 20 000 times faster than the traditional simulation method (240 000 s). On the basis of the predicted results, the optimal structure of the ICL was rapidly identified while simultaneously considering the W-type active and injected region wave functions. The predicted optimal structure for the 4.6 mu m wavelength emission achieves a high overlap (0.347) at a low theoretical average electric field (64 kV cm-1). The results obtained by our approach were found to be in close agreement with the real simulation results, with a maximum error of only 3.03%. This provides a valuable strategy and a convenient method for optimizing ICL designs in the future.

关键词wavefunction interband cascade lasers neural networks
URL查看原文
收录类别SCI ; EI
语种英语
资助项目Research and Development Program of China[2021YFB2800500]
WOS研究方向Physics
WOS类目Physics, Applied
WOS记录号WOS:001469218800001
出版者IOP Publishing Ltd
EI入藏号20251718288974
EI主题词Infrared lasers
EI分类号214 Materials Science ; 402.2 Public Buildings ; 405.3 Surveying ; 742.1 Photography ; 744 Lasers and Masers ; 744.6 Laser Applications ; 1201.7 Optimization Techniques ; 1301.4.1.1 Crystal Lattice
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/523897
专题信息科学与技术学院
信息科学与技术学院_特聘教授组_龚谦组
信息科学与技术学院_博士生
通讯作者Gong, Qian
作者单位
1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Natl Key Lab Mat Integrated Circuits, Shanghai 200050, Peoples R China
2.Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
3.Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
通讯作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Wang, Kun,Yang, Chen,Liu, Ruo-Tao,et al. Automated wavefunction identification and performance prediction for interband cascade lasers using neural networks[J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS,2025,58(19).
APA Wang, Kun.,Yang, Chen.,Liu, Ruo-Tao.,Du, An-Tian.,Cao, Chun-Fang.,...&Gong, Qian.(2025).Automated wavefunction identification and performance prediction for interband cascade lasers using neural networks.JOURNAL OF PHYSICS D-APPLIED PHYSICS,58(19).
MLA Wang, Kun,et al."Automated wavefunction identification and performance prediction for interband cascade lasers using neural networks".JOURNAL OF PHYSICS D-APPLIED PHYSICS 58.19(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Kun]的文章
[Yang, Chen]的文章
[Liu, Ruo-Tao]的文章
百度学术
百度学术中相似的文章
[Wang, Kun]的文章
[Yang, Chen]的文章
[Liu, Ruo-Tao]的文章
必应学术
必应学术中相似的文章
[Wang, Kun]的文章
[Yang, Chen]的文章
[Liu, Ruo-Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。