| |||||||
ShanghaiTech University Knowledge Management System
CLIP in medical imaging: A survey | |
2025-05-01 | |
发表期刊 | MEDICAL IMAGE ANALYSIS (IF:10.7[JCR-2023],11.9[5-Year]) |
ISSN | 1361-8415 |
EISSN | 1361-8423 |
卷号 | 102 |
发表状态 | 已发表 |
DOI | 10.1016/j.media.2025.103551 |
摘要 | Contrastive Language-Image Pre-training (CLIP), a simple yet effective pre-training paradigm, successfully introduces text supervision to vision models. It has shown promising results across various tasks due to its generalizability and interpretability. The use of CLIP has recently gained increasing interest in the medical imaging domain, serving as a pre-training paradigm for image-text alignment, or a critical component in diverse clinical tasks. With the aim of facilitating a deeper understanding of this promising direction, this survey offers an in-depth exploration of the CLIP within the domain of medical imaging, regarding both refined CLIP pre-training and CLIP-driven applications. In this paper, we (1) first start with a brief introduction to the fundamentals of CLIP methodology; (2) then investigate the adaptation of CLIP pre-training in the medical imaging domain, focusing on how to optimize CLIP given characteristics of medical images and reports; (3) further explore practical utilization of CLIP pre-trained models in various tasks, including classification, dense prediction, and cross-modal tasks; and (4) finally discuss existing limitations of CLIP in the context of medical imaging, and propose forward-looking directions to address the demands of medical imaging domain. Studies featuring technical and practical value are both investigated. We expect this survey will provide researchers with a holistic understanding of the CLIP paradigm and its potential implications. The project page of this survey can also be found on Github. |
关键词 | Medical image analysis Image-text alignment Vision language model Constrative languagr-image pre training |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China["U23A20295","82441023","62131015","82394432"] ; China Ministry of Science and Technology["S20240085","2022ZD0209000","2022ZD0213100"] ; Shanghai Municipal Central Guided Local Science and Technology Development Fund[YDZX20233100001001] |
WOS研究方向 | Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001454956200001 |
出版者 | ELSEVIER |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/514082 |
专题 | 生物医学工程学院 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_PI研究组_王乾组 生物医学工程学院_PI研究组_崔智铭组 生物医学工程学院_博士生 |
通讯作者 | Cui, Zhiming; Wang, Qian; Shen, Dinggang |
作者单位 | 1.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China 2.ShanghaiTech Univ, State Key Lab Adv Med Mat & Devices, Shanghai, Peoples R China 3.Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China 4.Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai, Peoples R China 5.Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai, Peoples R China 6.Shanghai Clin Res & Trial Ctr, Shanghai, Peoples R China |
第一作者单位 | 生物医学工程学院; 上海科技大学 |
通讯作者单位 | 生物医学工程学院; 上海科技大学 |
第一作者的第一单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Zhao, Zihao,Liu, Yuxiao,Wua, Han,et al. CLIP in medical imaging: A survey[J]. MEDICAL IMAGE ANALYSIS,2025,102. |
APA | Zhao, Zihao.,Liu, Yuxiao.,Wua, Han.,Wang, Mei.,Li, Yonghao.,...&Shen, Dinggang.(2025).CLIP in medical imaging: A survey.MEDICAL IMAGE ANALYSIS,102. |
MLA | Zhao, Zihao,et al."CLIP in medical imaging: A survey".MEDICAL IMAGE ANALYSIS 102(2025). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。