消息
×
loading..
DeepFRC: An End-to-End Deep Learning Model for Functional Registration and Classification
2025-01-30
状态已发表
摘要Functional data analysis (FDA) is essential for analyzing continuous, high-dimensional data, yet existing methods often decouple functional registration and classification, limiting their efficiency and performance. We present DeepFRC, an end-to-end deep learning framework that unifies these tasks within a single model. Our approach incorporates an alignment module that learns time warping functions via elastic function registration and a learnable basis representation module for dimensionality reduction on aligned data. This integration enhances both alignment accuracy and predictive performance. Theoretical analysis establishes that DeepFRC achieves low misalignment and generalization error, while simulations elucidate the progression of registration, reconstruction, and classification during training. Experiments on real-world datasets demonstrate that DeepFRC consistently outperforms state-of-the-art methods, particularly in addressing complex registration challenges. Code is available at: https://github.com/Drivergo-93589/DeepFRC.
语种英语
DOIarXiv:2501.18116
相关网址查看原文
出处Arxiv
收录类别PPRN.PPRN
WOS记录号PPRN:121032688
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Statistics& Probability
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/507031
专题数学科学研究所
信息科学与技术学院_硕士生
数学科学研究所_PI研究组(P)_曾鹏程组
数学科学研究所_本科生
通讯作者Zeng, Pengcheng
作者单位
ShanghaiTech Univ, Inst Math Sci, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Jiang, Siyuan,Hu, Yihan,Li, Wenjie,et al. DeepFRC: An End-to-End Deep Learning Model for Functional Registration and Classification. 2025.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiang, Siyuan]的文章
[Hu, Yihan]的文章
[Li, Wenjie]的文章
百度学术
百度学术中相似的文章
[Jiang, Siyuan]的文章
[Hu, Yihan]的文章
[Li, Wenjie]的文章
必应学术
必应学术中相似的文章
[Jiang, Siyuan]的文章
[Hu, Yihan]的文章
[Li, Wenjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。