| |||||||
ShanghaiTech University Knowledge Management System
DeepFRC: An End-to-End Deep Learning Model for Functional Registration and Classification | |
2025-01-30 | |
状态 | 已发表 |
摘要 | Functional data analysis (FDA) is essential for analyzing continuous, high-dimensional data, yet existing methods often decouple functional registration and classification, limiting their efficiency and performance. We present DeepFRC, an end-to-end deep learning framework that unifies these tasks within a single model. Our approach incorporates an alignment module that learns time warping functions via elastic function registration and a learnable basis representation module for dimensionality reduction on aligned data. This integration enhances both alignment accuracy and predictive performance. Theoretical analysis establishes that DeepFRC achieves low misalignment and generalization error, while simulations elucidate the progression of registration, reconstruction, and classification during training. Experiments on real-world datasets demonstrate that DeepFRC consistently outperforms state-of-the-art methods, particularly in addressing complex registration challenges. Code is available at: https://github.com/Drivergo-93589/DeepFRC. |
语种 | 英语 |
DOI | arXiv:2501.18116 |
相关网址 | 查看原文 |
出处 | Arxiv |
收录类别 | PPRN.PPRN |
WOS记录号 | PPRN:121032688 |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Statistics& Probability |
文献类型 | 预印本 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/507031 |
专题 | 数学科学研究所 信息科学与技术学院_硕士生 数学科学研究所_PI研究组(P)_曾鹏程组 数学科学研究所_本科生 |
通讯作者 | Zeng, Pengcheng |
作者单位 | ShanghaiTech Univ, Inst Math Sci, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Jiang, Siyuan,Hu, Yihan,Li, Wenjie,et al. DeepFRC: An End-to-End Deep Learning Model for Functional Registration and Classification. 2025. |
条目包含的文件 | ||||||
条目无相关文件。 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。