| |||||||
ShanghaiTech University Knowledge Management System
Multi-level sparse network lasso: Locally sparse learning with flexible sample clusters | |
2025-06-28 | |
发表期刊 | NEUROCOMPUTING (IF:5.5[JCR-2023],5.5[5-Year]) |
ISSN | 0925-2312 |
EISSN | 1872-8286 |
卷号 | 635 |
发表状态 | 已发表 |
DOI | 10.1016/j.neucom.2025.129898 |
摘要 | Traditional learning usually assumes that all samples share the same global model, which fails to preserve critical local information for heterogeneous data. It can be tackled by detecting sample clusters and learning sample-specific models but is limited to sample-level clustering and sample-specific feature selection. In this paper, we propose multi-level sparse network lasso (MSN Lasso) for flexible local learning. It multiplicatively decomposes model parameters into two components: One component is for coarse-grained group-level, and another is for fine-grained entry-level. At the clustering stage, MSN Lasso simultaneously groups samples (group-level) and clusters specific features across samples (entry-level). At the feature selection stage, it enables both across-sample (group-level) and sample-specific (entry-level) feature selection. Theoretical analysis reveals a potential equivalence to a jointly regularized local model, which informs the development of an efficient algorithm. A divide-and-conquer optimization strategy is further introduced to enhance the algorithm's efficiency. Extensive experiments across diverse datasets demonstrate that MSN Lasso outperforms existing methods and exhibits greater flexibility. © 2025 Elsevier B.V. |
关键词 | Adversarial machine learning Contrastive Learning Clusterings Features selection Group level Multi-level network lasso Multi-level networks Multilevels Sample clustering Sparse learning Sparse network Traditional learning |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | ShanghaiTech University[2019F0203-000-06] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:001447817200001 |
出版者 | Elsevier B.V. |
EI入藏号 | 20251118053887 |
EI主题词 | Federated learning |
EI分类号 | 1101.2 Machine Learning |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/503664 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_张玉瑶组 信息科学与技术学院_PI研究组_孙露组 |
通讯作者 | Fei, Luhuan |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China; 2.Department of Computer Science and Engineering, College of Engineering, Michigan State University, East Lansing, United States |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Fei, Luhuan,Wang, Xinyi,Wang, Jiankun,et al. Multi-level sparse network lasso: Locally sparse learning with flexible sample clusters[J]. NEUROCOMPUTING,2025,635. |
APA | Fei, Luhuan,Wang, Xinyi,Wang, Jiankun,Sun, Lu,&Zhang, Yuyao.(2025).Multi-level sparse network lasso: Locally sparse learning with flexible sample clusters.NEUROCOMPUTING,635. |
MLA | Fei, Luhuan,et al."Multi-level sparse network lasso: Locally sparse learning with flexible sample clusters".NEUROCOMPUTING 635(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。