消息
×
loading..
Multi-level sparse network lasso: Locally sparse learning with flexible sample clusters
2025-06-28
发表期刊NEUROCOMPUTING (IF:5.5[JCR-2023],5.5[5-Year])
ISSN0925-2312
EISSN1872-8286
卷号635
发表状态已发表
DOI10.1016/j.neucom.2025.129898
摘要

Traditional learning usually assumes that all samples share the same global model, which fails to preserve critical local information for heterogeneous data. It can be tackled by detecting sample clusters and learning sample-specific models but is limited to sample-level clustering and sample-specific feature selection. In this paper, we propose multi-level sparse network lasso (MSN Lasso) for flexible local learning. It multiplicatively decomposes model parameters into two components: One component is for coarse-grained group-level, and another is for fine-grained entry-level. At the clustering stage, MSN Lasso simultaneously groups samples (group-level) and clusters specific features across samples (entry-level). At the feature selection stage, it enables both across-sample (group-level) and sample-specific (entry-level) feature selection. Theoretical analysis reveals a potential equivalence to a jointly regularized local model, which informs the development of an efficient algorithm. A divide-and-conquer optimization strategy is further introduced to enhance the algorithm's efficiency. Extensive experiments across diverse datasets demonstrate that MSN Lasso outperforms existing methods and exhibits greater flexibility. © 2025 Elsevier B.V.

关键词Adversarial machine learning Contrastive Learning Clusterings Features selection Group level Multi-level network lasso Multi-level networks Multilevels Sample clustering Sparse learning Sparse network Traditional learning
URL查看原文
收录类别SCI ; EI
语种英语
资助项目ShanghaiTech University[2019F0203-000-06]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001447817200001
出版者Elsevier B.V.
EI入藏号20251118053887
EI主题词Federated learning
EI分类号1101.2 Machine Learning
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/503664
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_张玉瑶组
信息科学与技术学院_PI研究组_孙露组
通讯作者Fei, Luhuan
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China;
2.Department of Computer Science and Engineering, College of Engineering, Michigan State University, East Lansing, United States
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Fei, Luhuan,Wang, Xinyi,Wang, Jiankun,et al. Multi-level sparse network lasso: Locally sparse learning with flexible sample clusters[J]. NEUROCOMPUTING,2025,635.
APA Fei, Luhuan,Wang, Xinyi,Wang, Jiankun,Sun, Lu,&Zhang, Yuyao.(2025).Multi-level sparse network lasso: Locally sparse learning with flexible sample clusters.NEUROCOMPUTING,635.
MLA Fei, Luhuan,et al."Multi-level sparse network lasso: Locally sparse learning with flexible sample clusters".NEUROCOMPUTING 635(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fei, Luhuan]的文章
[Wang, Xinyi]的文章
[Wang, Jiankun]的文章
百度学术
百度学术中相似的文章
[Fei, Luhuan]的文章
[Wang, Xinyi]的文章
[Wang, Jiankun]的文章
必应学术
必应学术中相似的文章
[Fei, Luhuan]的文章
[Wang, Xinyi]的文章
[Wang, Jiankun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。