| |||||||
ShanghaiTech University Knowledge Management System
An adaptive stochastic linearized augmented Lagrangian method for nonconvex constrained stochastic optimization | |
2025-03 | |
发表期刊 | MATHEMATICAL PROGRAMMING (IF:2.2[JCR-2023],3.3[5-Year]) |
ISSN | 0025-5610 |
发表状态 | 已投递待接收 |
摘要 | Adaptive parameter strategies are crucial to enhancing robustness and ensuring practical applicability of penalty methods in constrained optimization. However, in the context of general constrained stochastic optimization, additional challenges arise due to the randomness introduced by adaptive parameters. In this paper, we propose an Adaptive Stochastic Linearized augmented Lagrangian method (AdaStoL) for solving nonconvex constrained stochastic optimization problem. AdaStoL employs a single-loop algorithmic framework with dynamically updated penalty parameters based on the behavior of iterates. It combines a recursive momentum technique along with clipped stochastic gradient computations to potentially reduce the random variance caused by stochasticity. We present a high-probability oracle complexity analysis for the proposed algorithm to reach an $\epsilon$-KKT point. Under certain constraint qualification conditions, we also investigate the global convergence properties of AdaStoL regarding the stationarity residual and constraint violation at iterates when the penalty parameter sequence is unbounded and bounded, respectively. Preliminary numerical experiments results are also reported. |
关键词 | Nonconvex constrained optimization Stochastic approximation Momentum High probability Oracle complexity Global convergence |
学科领域 | 非线性规划 ; 随机规划 |
学科门类 | 理学 ; 理学::数学 |
收录类别 | SCIE |
语种 | 英语 |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/503653 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_王浩组 |
共同第一作者 | Wang, Hao; Zuo, Shiji |
通讯作者 | Zuo, Shiji |
作者单位 | 1.School of Computer Science and Engineering, Sun Yat-sen University 2.School of Information Science and Technology, ShanghaiTech University |
通讯作者单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Wang, Xiao,Wang, Hao,Zuo, Shiji. An adaptive stochastic linearized augmented Lagrangian method for nonconvex constrained stochastic optimization[J]. MATHEMATICAL PROGRAMMING,2025. |
APA | Wang, Xiao,Wang, Hao,&Zuo, Shiji.(2025).An adaptive stochastic linearized augmented Lagrangian method for nonconvex constrained stochastic optimization.MATHEMATICAL PROGRAMMING. |
MLA | Wang, Xiao,et al."An adaptive stochastic linearized augmented Lagrangian method for nonconvex constrained stochastic optimization".MATHEMATICAL PROGRAMMING (2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wang, Xiao]的文章 |
[Wang, Hao]的文章 |
[Zuo, Shiji]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wang, Xiao]的文章 |
[Wang, Hao]的文章 |
[Zuo, Shiji]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wang, Xiao]的文章 |
[Wang, Hao]的文章 |
[Zuo, Shiji]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。