Task-Oriented Lossy Compression with Data, Perception, and Classification Constraints
2025-01-20
发表期刊ARXIV (IF:13.8[JCR-2023],13.1[5-Year])
ISSN1558-0008
EISSN1558-0008
卷号PP期号:99
发表状态已发表
DOIarXiv:2405.04144
摘要By extracting task-relevant information while maximally compressing the input, the information bottleneck (IB) principle has provided a guideline for learning effective and robust representations of the target inference. However, extending the idea to the multi-task learning scenario with joint consideration of generative tasks and traditional reconstruction tasks remains unexplored. This paper addresses this gap by reconsidering the lossy compression problem with diverse constraints on data reconstruction, perceptual quality, and classification accuracy. Firstly, we study two ternary relationships, namely, the rate-distortion-classification (RDC) and rate-perception-classification (RPC). For both RDC and RPC functions, we derive the closed-form expressions of the optimal rate for binary and Gaussian sources. These new results complement the IB principle and provide insights into effectively extracting task-oriented information to fulfill diverse objectives. Secondly, unlike prior research demonstrating a tradeoff between classification and perception in signal restoration problems, we prove that such a tradeoff does not exist in the RPC function and reveal that the source noise plays a decisive role in the classification-perception tradeoff. Finally, we implement a deep-learning-based image compression framework, incorporating multiple tasks related to distortion, perception, and classification. The experimental results coincide with the theoretical analysis and verify the effectiveness of our generalized IB in balancing various task objectives.
关键词Information bottleneck lossy compression task-oriented communication rate-distortion theory perceptual quality
URL查看原文
收录类别PPRN.PPRN ; EI
语种英语
资助项目National Natural Science Foundation of China (NSFC)[62471270] ; Guangdong Basic and Applied Basic Research Foundation[2024A1515030028] ; General Research Fund from Research Grants Council of Hong Kong["14202421","14214122","14202723"] ; Area of Excellence Scheme from Research Grants Council of Hong Kong[AoE/E-601/22-R] ; NSFC/RGC Collaborative Research Scheme from Research Grants Council of Hong Kong[CRS_HKUST603/22]
WOS类目Computer Science, Information Systems ; Mathematics
WOS记录号PPRN:89076763
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20251618253719
EI主题词Signal distortion
EI分类号701.1 Electricity: Basic Concepts and Phenomena ; 716.1 Information Theory and Signal Processing ; 1106.3.1 Image Processing
原始文献类型Article in Press
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/503591
专题信息科学与技术学院
信息科学与技术学院_PI研究组_吴幼龙组
通讯作者Wu, Youlong
作者单位
1.Chinese Univ Hong Kong, Dept Informat Engn, Hong Kong, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
3.Peng Cheng Lab, Shenzhen 518055, Peoples R China
通讯作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Wang, Yuhan,Wu, Youlong,Ma, Shuai,et al. Task-Oriented Lossy Compression with Data, Perception, and Classification Constraints[J]. ARXIV,2025,PP(99).
APA Wang, Yuhan,Wu, Youlong,Ma, Shuai,&Zhang, Ying-Jun Angela.(2025).Task-Oriented Lossy Compression with Data, Perception, and Classification Constraints.ARXIV,PP(99).
MLA Wang, Yuhan,et al."Task-Oriented Lossy Compression with Data, Perception, and Classification Constraints".ARXIV PP.99(2025).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Yuhan]的文章
[Wu, Youlong]的文章
[Ma, Shuai]的文章
百度学术
百度学术中相似的文章
[Wang, Yuhan]的文章
[Wu, Youlong]的文章
[Ma, Shuai]的文章
必应学术
必应学术中相似的文章
[Wang, Yuhan]的文章
[Wu, Youlong]的文章
[Ma, Shuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。