ShanghaiTech University Knowledge Management System
Coordinate-based neural representation enabling zero-shot learning for fast 3D multiparametric quantitative MRI | |
2025-05-01 | |
发表期刊 | MEDICAL IMAGE ANALYSIS (IF:10.7[JCR-2023],11.9[5-Year]) |
ISSN | 1361-8415 |
EISSN | 1361-8423 |
卷号 | 102 |
发表状态 | 已发表 |
DOI | 10.1016/j.media.2025.103530 |
摘要 | Quantitative magnetic resonance imaging (qMRI) offers tissue-specific physical parameters with significant potential for neuroscience research and clinical practice. However, lengthy scan times for 3D multiparametric qMRI acquisition limit its clinical utility. Here, we propose SUMMIT, an innovative imaging methodology that includes data acquisition and an unsupervised reconstruction for simultaneous multiparametric qMRI. SUMMIT first encodes multiple important quantitative properties into highly undersampled k-space. It further leverages implicit neural representation incorporated with a dedicated physics model to reconstruct the desired multiparametric maps without needing external training datasets. SUMMIT delivers co-registered T1, T2, T2 & lowast;, and subvoxel quantitative susceptibility mapping. Extensive simulations, phantom, and in vivo brain imaging demonstrate SUMMIT's high accuracy. Notably, SUMMIT uniquely unravels microstructural alternations in patients with white matter hyperintense lesions with high sensitivity and specificity. Additionally, the proposed unsupervised approach for qMRI reconstruction also introduces a novel zero-shot learning paradigm for multiparametric imaging applicable to various medical imaging modalities. |
关键词 | Quantitative MRI Multiparametric mapping Zero-shot learning Implicit neural representation |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foun-dation of China[ |
WOS研究方向 | Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:001443786100001 |
出版者 | ELSEVIER |
EI入藏号 | 20251118025829 |
EI主题词 | Zero-shot learning |
EI分类号 | 101.1 Biomedical Engineering ; 1101.2 Machine Learning ; 709 Electrical Engineering, Other Topics ; 746 Imaging Techniques |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/503573 |
专题 | 生物医学工程学院 信息科学与技术学院 信息科学与技术学院_PI研究组_张玉瑶组 生物医学工程学院_PI研究组_齐海坤组 |
通讯作者 | Wei, Hongjiang |
作者单位 | 1.Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai, Peoples R China 2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China 3.Shanghai Jiao Tong Univ, Sch Med, Dept Neurosurg, Shanghai, Peoples R China 4.Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA USA 5.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 6.Shanghai Jiao Tong Univ, Natl Engn Res Ctr Adv Magnet Resonance Technol Dia, Shanghai, Peoples R China |
推荐引用方式 GB/T 7714 | Lao, Guoyan,Feng, Ruimin,Qi, Haikun,et al. Coordinate-based neural representation enabling zero-shot learning for fast 3D multiparametric quantitative MRI[J]. MEDICAL IMAGE ANALYSIS,2025,102. |
APA | Lao, Guoyan.,Feng, Ruimin.,Qi, Haikun.,Lv, Zhenfeng.,Liu, Qiangqiang.,...&Wei, Hongjiang.(2025).Coordinate-based neural representation enabling zero-shot learning for fast 3D multiparametric quantitative MRI.MEDICAL IMAGE ANALYSIS,102. |
MLA | Lao, Guoyan,et al."Coordinate-based neural representation enabling zero-shot learning for fast 3D multiparametric quantitative MRI".MEDICAL IMAGE ANALYSIS 102(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。