Coordinate-based neural representation enabling zero-shot learning for fast 3D multiparametric quantitative MRI
2025-05-01
发表期刊MEDICAL IMAGE ANALYSIS (IF:10.7[JCR-2023],11.9[5-Year])
ISSN1361-8415
EISSN1361-8423
卷号102
发表状态已发表
DOI10.1016/j.media.2025.103530
摘要

Quantitative magnetic resonance imaging (qMRI) offers tissue-specific physical parameters with significant potential for neuroscience research and clinical practice. However, lengthy scan times for 3D multiparametric qMRI acquisition limit its clinical utility. Here, we propose SUMMIT, an innovative imaging methodology that includes data acquisition and an unsupervised reconstruction for simultaneous multiparametric qMRI. SUMMIT first encodes multiple important quantitative properties into highly undersampled k-space. It further leverages implicit neural representation incorporated with a dedicated physics model to reconstruct the desired multiparametric maps without needing external training datasets. SUMMIT delivers co-registered T1, T2, T2 & lowast;, and subvoxel quantitative susceptibility mapping. Extensive simulations, phantom, and in vivo brain imaging demonstrate SUMMIT's high accuracy. Notably, SUMMIT uniquely unravels microstructural alternations in patients with white matter hyperintense lesions with high sensitivity and specificity. Additionally, the proposed unsupervised approach for qMRI reconstruction also introduces a novel zero-shot learning paradigm for multiparametric imaging applicable to various medical imaging modalities.

关键词Quantitative MRI Multiparametric mapping Zero-shot learning Implicit neural representation
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foun-dation of China[
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:001443786100001
出版者ELSEVIER
EI入藏号20251118025829
EI主题词Zero-shot learning
EI分类号101.1 Biomedical Engineering ; 1101.2 Machine Learning ; 709 Electrical Engineering, Other Topics ; 746 Imaging Techniques
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/503573
专题生物医学工程学院
信息科学与技术学院
信息科学与技术学院_PI研究组_张玉瑶组
生物医学工程学院_PI研究组_齐海坤组
通讯作者Wei, Hongjiang
作者单位
1.Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai, Peoples R China
2.ShanghaiTech Univ, Sch Biomed Engn, Shanghai, Peoples R China
3.Shanghai Jiao Tong Univ, Sch Med, Dept Neurosurg, Shanghai, Peoples R China
4.Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA USA
5.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
6.Shanghai Jiao Tong Univ, Natl Engn Res Ctr Adv Magnet Resonance Technol Dia, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Lao, Guoyan,Feng, Ruimin,Qi, Haikun,et al. Coordinate-based neural representation enabling zero-shot learning for fast 3D multiparametric quantitative MRI[J]. MEDICAL IMAGE ANALYSIS,2025,102.
APA Lao, Guoyan.,Feng, Ruimin.,Qi, Haikun.,Lv, Zhenfeng.,Liu, Qiangqiang.,...&Wei, Hongjiang.(2025).Coordinate-based neural representation enabling zero-shot learning for fast 3D multiparametric quantitative MRI.MEDICAL IMAGE ANALYSIS,102.
MLA Lao, Guoyan,et al."Coordinate-based neural representation enabling zero-shot learning for fast 3D multiparametric quantitative MRI".MEDICAL IMAGE ANALYSIS 102(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lao, Guoyan]的文章
[Feng, Ruimin]的文章
[Qi, Haikun]的文章
百度学术
百度学术中相似的文章
[Lao, Guoyan]的文章
[Feng, Ruimin]的文章
[Qi, Haikun]的文章
必应学术
必应学术中相似的文章
[Lao, Guoyan]的文章
[Feng, Ruimin]的文章
[Qi, Haikun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。