| |||||||
ShanghaiTech University Knowledge Management System
IRFNet: Cognitive-Inspired Iterative Refinement Fusion Network for Camouflaged Object Detection | |
2025-03-01 | |
发表期刊 | SENSORS (IF:3.4[JCR-2023],3.7[5-Year]) |
ISSN | 1424-8220 |
EISSN | 1424-8220 |
卷号 | 25期号:5 |
发表状态 | 已发表 |
DOI | 10.3390/s25051555 |
摘要 | Camouflaged Object Detection (COD) aims to identify objects that are intentionally concealed within their surroundings through appearance, texture, or pattern adaptations. Despite recent advances, extreme object-background similarity causes existing methods struggle with accurately capturing discriminative features and effectively modeling multiscale patterns while preserving fine details. To address these challenges, we propose Iterative Refinement Fusion Network (IRFNet), a novel framework that mimics human visual cognition through progressive feature enhancement and iterative optimization. Our approach incorporates the following: (1) a Hierarchical Feature Enhancement Module (HFEM) coupled with a dynamic channel-spatial attention mechanism, which enriches multiscale feature representations through bilateral and trilateral fusion pathways; and (2) a Context-guided Iterative Optimization Framework (CIOF) that combines transformer-based global context modeling with iterative refinement through dual-branch supervision. Extensive experiments on three challenging benchmark datasets (CAMO, COD10K, and NC4K) demonstrate that IRFNet consistently outperforms fourteen state-of-the-art methods, achieving improvements of 0.9-13.7% across key metrics. Comprehensive ablation studies validate the effectiveness of each proposed component and demonstrate how our iterative refinement strategy enables progressive improvement in detection accuracy. |
关键词 | object detection computer vision camouflaged object detection attention mechanism iterative refinement cross-level feature fusion |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | null[2021289] |
WOS研究方向 | Chemistry ; Engineering ; Instruments & Instrumentation |
WOS类目 | Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation |
WOS记录号 | WOS:001443465600001 |
出版者 | MDPI |
EI入藏号 | 20251118038152 |
EI主题词 | Object recognition |
EI分类号 | 913.3 Quality Assurance and Control - 1101.2 Machine Learning - 1106.3.1 Image Processing - 1106.8 Computer Vision |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/503572 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 |
通讯作者 | Wei, Jianming; Xu, Zhengyi |
作者单位 | 1.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China 2.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China 3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Guohan,Wang, Jingxin,Wei, Jianming,et al. IRFNet: Cognitive-Inspired Iterative Refinement Fusion Network for Camouflaged Object Detection[J]. SENSORS,2025,25(5). |
APA | Li, Guohan,Wang, Jingxin,Wei, Jianming,&Xu, Zhengyi.(2025).IRFNet: Cognitive-Inspired Iterative Refinement Fusion Network for Camouflaged Object Detection.SENSORS,25(5). |
MLA | Li, Guohan,et al."IRFNet: Cognitive-Inspired Iterative Refinement Fusion Network for Camouflaged Object Detection".SENSORS 25.5(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。