消息
×
loading..
IRFNet: Cognitive-Inspired Iterative Refinement Fusion Network for Camouflaged Object Detection
2025-03-01
发表期刊SENSORS (IF:3.4[JCR-2023],3.7[5-Year])
ISSN1424-8220
EISSN1424-8220
卷号25期号:5
发表状态已发表
DOI10.3390/s25051555
摘要

Camouflaged Object Detection (COD) aims to identify objects that are intentionally concealed within their surroundings through appearance, texture, or pattern adaptations. Despite recent advances, extreme object-background similarity causes existing methods struggle with accurately capturing discriminative features and effectively modeling multiscale patterns while preserving fine details. To address these challenges, we propose Iterative Refinement Fusion Network (IRFNet), a novel framework that mimics human visual cognition through progressive feature enhancement and iterative optimization. Our approach incorporates the following: (1) a Hierarchical Feature Enhancement Module (HFEM) coupled with a dynamic channel-spatial attention mechanism, which enriches multiscale feature representations through bilateral and trilateral fusion pathways; and (2) a Context-guided Iterative Optimization Framework (CIOF) that combines transformer-based global context modeling with iterative refinement through dual-branch supervision. Extensive experiments on three challenging benchmark datasets (CAMO, COD10K, and NC4K) demonstrate that IRFNet consistently outperforms fourteen state-of-the-art methods, achieving improvements of 0.9-13.7% across key metrics. Comprehensive ablation studies validate the effectiveness of each proposed component and demonstrate how our iterative refinement strategy enables progressive improvement in detection accuracy.

关键词object detection computer vision camouflaged object detection attention mechanism iterative refinement cross-level feature fusion
URL查看原文
收录类别SCI ; EI
语种英语
资助项目null[2021289]
WOS研究方向Chemistry ; Engineering ; Instruments & Instrumentation
WOS类目Chemistry, Analytical ; Engineering, Electrical & Electronic ; Instruments & Instrumentation
WOS记录号WOS:001443465600001
出版者MDPI
EI入藏号20251118038152
EI主题词Object recognition
EI分类号913.3 Quality Assurance and Control - 1101.2 Machine Learning - 1106.3.1 Image Processing - 1106.8 Computer Vision
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/503572
专题信息科学与技术学院
信息科学与技术学院_硕士生
通讯作者Wei, Jianming; Xu, Zhengyi
作者单位
1.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
2.Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
推荐引用方式
GB/T 7714
Li, Guohan,Wang, Jingxin,Wei, Jianming,et al. IRFNet: Cognitive-Inspired Iterative Refinement Fusion Network for Camouflaged Object Detection[J]. SENSORS,2025,25(5).
APA Li, Guohan,Wang, Jingxin,Wei, Jianming,&Xu, Zhengyi.(2025).IRFNet: Cognitive-Inspired Iterative Refinement Fusion Network for Camouflaged Object Detection.SENSORS,25(5).
MLA Li, Guohan,et al."IRFNet: Cognitive-Inspired Iterative Refinement Fusion Network for Camouflaged Object Detection".SENSORS 25.5(2025).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Guohan]的文章
[Wang, Jingxin]的文章
[Wei, Jianming]的文章
百度学术
百度学术中相似的文章
[Li, Guohan]的文章
[Wang, Jingxin]的文章
[Wei, Jianming]的文章
必应学术
必应学术中相似的文章
[Li, Guohan]的文章
[Wang, Jingxin]的文章
[Wei, Jianming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。