ShanghaiTech University Knowledge Management System
Performance Evaluation of Implicit Neural Representations in Diagnostic Fan-Beam CT Imaging | |
2024-10-11 | |
来源专著 | Deep Learning for Advanced X-ray Detection and Imaging Applications |
出版地 | Gewerbestrasse 11, 6330 Cham, Switzerland |
出版者 | Springer, Cham |
摘要 | Recently, implicit neural representation (INR) has been widely applied in computed tomography (CT) reconstruction, achieving impressive results in sparse view reconstruction and metal artifacts reduction with high peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) values. In this chapter, we conduct a comprehensive evaluation of INR’s effectiveness in fan-beam CT applications using the metrics accredited by the American College of Radiology (ACR), such as CT number accuracy, low-contrast detectability, and spatial resolution. Our studies show that, despite demonstrating potential, further refinement of INR-based techniques is needed to fully harness their capabilities in clinical applications, in terms of CT number accuracy, low-contrast detectability, spatial resolution, and free of artifacts. |
DOI | doi.org/10.1007/978-3-031-75653-5_4 |
URL | 查看原文 |
文献类型 | 专著章节 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/500252 |
专题 | 生物医学工程学院 信息科学与技术学院 信息科学与技术学院_博士生 生物医学工程学院_PI研究组_赖晓春组 |
作者单位 | 1.School of Biomedical Engineering, ShanghaiTech University, Shanghai, China 2.School of Computer Science and Engineering, Southeast University, Nanjing, China 3.School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Wenhui, Qin,Zhentao, Liu,Xiaopeng, Yu,et al. Performance Evaluation of Implicit Neural Representations in Diagnostic Fan-Beam CT Imaging. Gewerbestrasse 11, 6330 Cham, Switzerland:Springer, Cham,2024. |
条目包含的文件 | ||||||
条目无相关文件。 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。