消息
×
loading..
LatentGNN: Learning efficient non-local relations for visual recognition
2019
会议录名称36TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING, ICML 2019
卷号2019-June
页码12767-12776
发表状态已发表
DOI---
摘要

Capturing long-range dependencies in feature representations is crucial for many visual recognition tasks. Despite recent successes of deep convolutional networks, it remains challenging to model non-local context relations between visual features. A promising strategy is to model the feature context by a fully-connected graph neural network (GNN), which augments traditional convolutional features with an estimated non-local context representation. However, most GNN-bascd approaches require computing a dense graph affinity matrix and hence have difficulty in scaling up to tackle complex real-world visual problems. In this work, we propose an efficient and yet flexible non-local relation representation based on a novel class of graph neural networks. Our key idea is to introduce a latent space to reduce the complexity of graph, which allows us to use a low-rank representation for the graph affinity matrix and to achieve a linear complexity in computation. Extensive experimental evaluations on three major visual recognition tasks show that our method outperforms the prior works with a large margin while maintaining a low computation cost.
© 36th International Conference on Machine Learning, ICML 2019. All rights reserved.

会议地点Long Beach, CA, United states
收录类别EI ; CPCI ; CPCI-S
资助项目[18ZR1425100] ; National Natural Science Foundation of China[61703195]
出版者International Machine Learning Society (IMLS)
EI入藏号20200408068236
EI主题词Convolution ; Machine learning ; Matrix algebra
EI分类号Information Theory and Signal Processing:716.1 ; Computer Systems and Equipment:722 ; Algebra:921.1
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/50006
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_博士生
通讯作者He, Xuming
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhang, Songyang,Yan, Shipeng,He, Xuming. LatentGNN: Learning efficient non-local relations for visual recognition[C]:International Machine Learning Society (IMLS),2019:12767-12776.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Songyang]的文章
[Yan, Shipeng]的文章
[He, Xuming]的文章
百度学术
百度学术中相似的文章
[Zhang, Songyang]的文章
[Yan, Shipeng]的文章
[He, Xuming]的文章
必应学术
必应学术中相似的文章
[Zhang, Songyang]的文章
[Yan, Shipeng]的文章
[He, Xuming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。