| |||||||
ShanghaiTech University Knowledge Management System
LatentGNN: Learning efficient non-local relations for visual recognition | |
2019 | |
会议录名称 | 36TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING, ICML 2019 |
卷号 | 2019-June |
页码 | 12767-12776 |
发表状态 | 已发表 |
DOI | --- |
摘要 | Capturing long-range dependencies in feature representations is crucial for many visual recognition tasks. Despite recent successes of deep convolutional networks, it remains challenging to model non-local context relations between visual features. A promising strategy is to model the feature context by a fully-connected graph neural network (GNN), which augments traditional convolutional features with an estimated non-local context representation. However, most GNN-bascd approaches require computing a dense graph affinity matrix and hence have difficulty in scaling up to tackle complex real-world visual problems. In this work, we propose an efficient and yet flexible non-local relation representation based on a novel class of graph neural networks. Our key idea is to introduce a latent space to reduce the complexity of graph, which allows us to use a low-rank representation for the graph affinity matrix and to achieve a linear complexity in computation. Extensive experimental evaluations on three major visual recognition tasks show that our method outperforms the prior works with a large margin while maintaining a low computation cost. |
会议地点 | Long Beach, CA, United states |
收录类别 | EI ; CPCI ; CPCI-S |
资助项目 | [18ZR1425100] ; National Natural Science Foundation of China[61703195] |
出版者 | International Machine Learning Society (IMLS) |
EI入藏号 | 20200408068236 |
EI主题词 | Convolution ; Machine learning ; Matrix algebra |
EI分类号 | Information Theory and Signal Processing:716.1 ; Computer Systems and Equipment:722 ; Algebra:921.1 |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/50006 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_博士生 |
通讯作者 | He, Xuming |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Songyang,Yan, Shipeng,He, Xuming. LatentGNN: Learning efficient non-local relations for visual recognition[C]:International Machine Learning Society (IMLS),2019:12767-12776. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。