消息
×
loading..
Blind Demixing via Wirtinger Flow with Random Initialization
2019
会议录名称22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89
ISSN2640-3498
卷号89
页码362-370
发表状态已发表
摘要

This paper concerns the problem of demixing a series of source signals from the sum of bilinear measurements. This problem spans diverse areas such as communication, imaging processing, machine learning, etc. However, semidefinite programming for blind demixing is prohibitive to large-scale problems due to high computational complexity and storage cost. Although several efficient algorithms have been developed recently that enjoy the benefits of fast convergence rates and even regularization free, they still call for spectral initialization. To find simple initialization approach that works equally well as spectral initialization, we propose to solve blind demixing problem via Wirtinger flow with random initialization, which yields a natural implementation. To reveal the efficiency of this algorithm, we provide the global convergence guarantee concerning randomly initialized Wirtinger flow for blind demixing. Specifically, it shows that with sufficient samples, the iterates of randomly initialized Wirtinger flow can enter a local region that enjoys strong convexity and strong smoothness within a few iterations at the first stage. At the second stage, iterates of randomly initialized Wirtinger flow further converge linearly to the ground truth.

会议录编者/会议主办者AISTATS 2019 - 22nd International Conference on Artificial Intelligence and Statistics
关键词Iterative methodsFast convergence rate Global conver-gence Imaging processing Large-scale problem Semi-definite programming Source signals Storage costs Strong convexities
会议名称22nd International Conference on Artificial Intelligence and Statistics, AISTATS 2019
出版地31 GIBBS ST, BROOKLINE, MA 02446 USA
会议地点Naha, Japan
会议日期April 16, 2019 - April 18, 2019
收录类别EI ; CPCI ; CPCI-S
语种英语
资助项目Shanghai Sailing Program[16YF1407700]
WOS研究方向Computer Science ; Mathematics
WOS类目Computer Science, Artificial Intelligence ; Statistics & Probability
WOS记录号WOS:000509687900038
出版者MICROTOME PUBLISHING
EI入藏号20202108703138
EI主题词Iterative methods ; Artificial intelligence
EI分类号Artificial Intelligence:723.4 ; Numerical Methods:921.6
WOS关键词DECONVOLUTION
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/49984
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_石远明组
通讯作者Dong, Jialin
作者单位
ShanghaiTech Univ, Shanghai, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Dong, Jialin,Shi, Yuanming. Blind Demixing via Wirtinger Flow with Random Initialization[C]//AISTATS 2019 - 22nd International Conference on Artificial Intelligence and Statistics. 31 GIBBS ST, BROOKLINE, MA 02446 USA:MICROTOME PUBLISHING,2019:362-370.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Dong, Jialin]的文章
[Shi, Yuanming]的文章
百度学术
百度学术中相似的文章
[Dong, Jialin]的文章
[Shi, Yuanming]的文章
必应学术
必应学术中相似的文章
[Dong, Jialin]的文章
[Shi, Yuanming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。