ShanghaiTech University Knowledge Management System
Sparse blind demixing for low-latency wireless random access with massive connectivity | |
2019 | |
会议录名称 | 2019 IEEE 89TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-FALL)
![]() |
ISSN | 1090-3038 |
页码 | 1-5 |
发表状态 | 已发表 |
DOI | 10.1109/VTCFall.2019.8891518 |
摘要 | Massive connectivity has become a critical requirement for Internet-of-Things (IoT) networks, where a large number of devices need to connect to an access-point sporadically. Moreover, low-latency communication and sporadic device traffic are essential to support intelligent services in IoT networks. In this paper, to support low-latency communication for massive devices with sporadic traffic, we present a sparse blind demixing to simultaneously detect the active devices and decode multiple source signals without a priori channel state information in multi- in-multi-out (MIMO) networks. To address the unique challenges of bilinear measurements and sporadic device activity detection, we recast the estimation problem as a sparse and low-rank optimization problem via matrix lifting. We further propose a difference-of-convex-functions (DC) representation for the rank function to guarantee the exact rank constraint, followed by ignoring the non-convex group sparse function. This is achieved by exploiting the difference between nuclear norm and the convex Ky Fan k- norm for a rank function representation. We then develop an efficient DC algorithm to solve the resulting non-convex DC program without regularization parameter. Numerical results demonstrate that the proposed DC approach is able to exactly recover the ground truth signals with reduced sample sizes, as well as achieve better performance against noise compared with the existing convex methods. |
关键词 | Optimization Sparse matrices Channel estimation MIMO communication Fans Decoding Low latency communication |
会议地点 | Honolulu, HI, USA |
会议日期 | 22-25 Sept. 2019 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
EI主题词 | Channel state information ; Functions ; Numerical methods |
原始文献类型 | Conferences |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/49980 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_硕士生 |
作者单位 | ShanghaiTech University |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Min Fu,Jialin Dong,Yuanming Shi. Sparse blind demixing for low-latency wireless random access with massive connectivity[C],2019:1-5. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Min Fu]的文章 |
[Jialin Dong]的文章 |
[Yuanming Shi]的文章 |
百度学术 |
百度学术中相似的文章 |
[Min Fu]的文章 |
[Jialin Dong]的文章 |
[Yuanming Shi]的文章 |
必应学术 |
必应学术中相似的文章 |
[Min Fu]的文章 |
[Jialin Dong]的文章 |
[Yuanming Shi]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。