Sparse blind demixing for low-latency wireless random access with massive connectivity
2019
会议录名称2019 IEEE 89TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-FALL)
ISSN1090-3038
页码1-5
发表状态已发表
DOI10.1109/VTCFall.2019.8891518
摘要

Massive connectivity has become a critical requirement for Internet-of-Things (IoT) networks, where a large number of devices need to connect to an access-point sporadically. Moreover, low-latency communication and sporadic device traffic are essential to support intelligent services in IoT networks. In this paper, to support low-latency communication for massive devices with sporadic traffic, we present a sparse blind demixing to simultaneously detect the active devices and decode multiple source signals without a priori channel state information in multi- in-multi-out (MIMO) networks. To address the unique challenges of bilinear measurements and sporadic device activity detection, we recast the estimation problem as a sparse and low-rank optimization problem via matrix lifting. We further propose a difference-of-convex-functions (DC) representation for the rank function to guarantee the exact rank constraint, followed by ignoring the non-convex group sparse function. This is achieved by exploiting the difference between nuclear norm and the convex Ky Fan k- norm for a rank function representation. We then develop an efficient DC algorithm to solve the resulting non-convex DC program without regularization parameter. Numerical results demonstrate that the proposed DC approach is able to exactly recover the ground truth signals with reduced sample sizes, as well as achieve better performance against noise compared with the existing convex methods.

关键词Optimization Sparse matrices Channel estimation MIMO communication Fans Decoding Low latency communication
会议地点Honolulu, HI, USA
会议日期22-25 Sept. 2019
URL查看原文
收录类别EI ; CPCI ; CPCI-S
EI主题词Channel state information ; Functions ; Numerical methods
原始文献类型Conferences
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/49980
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_硕士生
作者单位
ShanghaiTech University
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Min Fu,Jialin Dong,Yuanming Shi. Sparse blind demixing for low-latency wireless random access with massive connectivity[C],2019:1-5.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Min Fu]的文章
[Jialin Dong]的文章
[Yuanming Shi]的文章
百度学术
百度学术中相似的文章
[Min Fu]的文章
[Jialin Dong]的文章
[Yuanming Shi]的文章
必应学术
必应学术中相似的文章
[Min Fu]的文章
[Jialin Dong]的文章
[Yuanming Shi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。