ShanghaiTech University Knowledge Management System
On-Device Federated Learning via Second-Order Optimization with Over-the-Air Computation | |
2019-09 | |
会议录名称 | 2019 IEEE 90TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-FALL)
![]() |
ISSN | 1090-3038 |
页码 | 1-5 |
发表状态 | 已发表 |
DOI | 10.1109/VTCFall.2019.8891310 |
摘要 | Federated learning becomes a promising approach for preserving privacy by keeping user data locally. The basic idea is that a central server iteratively aggregates distributed local models trained directly on mobile users’ local datasets to form a high-quality global model by computing the weighted sum of the locally updated models. However, the communication cost becomes the main bottleneck as a large number of communication rounds are involved in the federated learning procedure. We propose to update local models by second- order optimization methods with fast convergence rates, thereby significantly reducing the communication rounds for global model updates. Furthermore, the over-the-air computation technique is adopted to improve communication efficiency for model aggregation by utilizing the superposition property of wireless channels. A nonconvex low-rank beamforming approach is then developed to support over- the-air computation via difference-of-convexfunctions (DC) programming. Through extensive experiments, we reveal that the proposed DC algorithm is able to significantly minimize the aggregation error, and the second- order methods are quite robust to the model aggregation errors. |
关键词 | Computational modeling Array signal processing Atmospheric modeling Convergence Data privacy Wireless communication Loss measurement |
会议地点 | Honolulu, HI, USA |
会议日期 | 22-25 Sept. 2019 |
URL | 查看原文 |
收录类别 | EI ; CPCI ; CPCI-S |
EI主题词 | Mobile radio systems |
原始文献类型 | Conferences |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/49977 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_石远明组 信息科学与技术学院_博士生 |
作者单位 | ShanghaiTech University |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Sheng Hua,Kai Yang,Yuanming Shi. On-Device Federated Learning via Second-Order Optimization with Over-the-Air Computation[C],2019:1-5. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Sheng Hua]的文章 |
[Kai Yang]的文章 |
[Yuanming Shi]的文章 |
百度学术 |
百度学术中相似的文章 |
[Sheng Hua]的文章 |
[Kai Yang]的文章 |
[Yuanming Shi]的文章 |
必应学术 |
必应学术中相似的文章 |
[Sheng Hua]的文章 |
[Kai Yang]的文章 |
[Yuanming Shi]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。