| |||||||
ShanghaiTech University Knowledge Management System
Fine Tuning Text-to-3D Diffusion Model for 3D Object Morphing | |
2025-03 | |
会议录名称 | IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION |
发表状态 | 已投递待接收 |
摘要 | We present 3DMorphing, which aims to generate smooth and reasonable 3D interpolations between two 3D objects. Powerful 3D generation and reconstruction struggle to achieve this task due to the highly unstructured diffusion latent space and the non-semantic feature space, respectively. 3DMorphing utilizes the prior knowledge of multi-view diffusion models to achieve smooth and reasonable 3D interpolation. Our core idea is to use two LoRAs to fit two 3D objects to capture their respective 3D-aware semantics. This can ensure a smooth semantic transition during the interpolation. We utilize DDIM inversion to transform their multi-view images into latent noise, extracting geometry and texture features. Then, we interpolate the LoRA parameters and the latent noise to ensure a smooth transition in semantics and features. Meanwhile, we propose a 3D-aware rescheduling strategy during the sampling process to enhance the smooth transition of the interpolated 3D objects. Finally, we utilize 4DGS to reconstruct the interpolation process. The 4DGS can be decomposed into 3DGS to obtain individual 3D objects under different interpolation coefficients. Extensive experiments show that 3DMorphing can effectively interpolate between two 3D objects to generate semantically reasonable interpolated 3D objects with smooth transitions in both geometry and texture. |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/496944 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_张海鹏组 |
作者单位 | 1.上海科技大学 2.阿里巴巴达摩院 3.山东大学 4.香港大学 |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Zhong ZM,Yu CH,Xu YY,et al. Fine Tuning Text-to-3D Diffusion Model for 3D Object Morphing[C],2025. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。