Catalyzing Near-field Localization Through RIS Assistance: Optimization of Hybrid Operational Paradigms
2024-12-12
会议录名称GLOBECOM 2024 - 2024 IEEE GLOBAL COMMUNICATIONS CONFERENCE
ISSN1930-529X
页码4448-4453
DOI10.1109/GLOBECOM52923.2024.10901497
摘要The utilization of reconfigurable intelligent meta-surface (RIS) for target localization has emerged as a prominent technology in sixth-generation (6G) wireless networks. Due to the deployment of large-scale RIS and the application of high-frequency signaling in 6G, future localization scenarios are anticipated to predominantly occur within the near-field region. In this paper, we investigate the scenario of near-field target localization supported by large-scale RIS with hybrid operational paradigms, wherein elements capable of passive or active signal processing (SP) are employed. Through a series of complex technical calculations, we derive the closed-form of Cramer-Rao bound (CRB) for near-field localization assisted by RIS with hybrid operational paradigms. By analyzing the Cramer-Rao bound (CRB) of near-field localization, we aim to optimize the ratio of active and passive SP elements of RIS to determine the optimal hybrid operational paradigms. To achieve this, we utilize a spatial angle approximation technique to convert the complex combinatorial optimization problem into a tractable optimization problem, which is amenable to efficient solutions using existing optimization algorithms. Through simulations, we show that the proposed technique can effectively find the optimal ratio of active and passive SP elements that minimizes the localization error.
关键词Compressed sensing Image coding Image segmentation Interpolation Crame Rao bounds Crame-Rao lower bounds Cramer Rao lower bound Large-scales Near-field localisation Processing elements Reconfigurable Reconfigurable intelligent surface Signal-processing Target localization
会议名称2024 IEEE Global Communications Conference, GLOBECOM 2024
会议地点Cape Town, South Africa
会议日期8-12 Dec. 2024
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20251318124763
EI主题词Cramer-Rao bounds
EISSN2576-6813
EI分类号716.1 Information Theory and Signal Processing ; 1106.3.1 Image Processing ; 1201.9 Numerical Methods ; 1202.2 Mathematical Statistics
原始文献类型Conference article (CA)
来源库IEEE
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/496911
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_廉黎祥组
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Xu Fang,Lixiang Lian. Catalyzing Near-field Localization Through RIS Assistance: Optimization of Hybrid Operational Paradigms[C]:Institute of Electrical and Electronics Engineers Inc.,2024:4448-4453.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xu Fang]的文章
[Lixiang Lian]的文章
百度学术
百度学术中相似的文章
[Xu Fang]的文章
[Lixiang Lian]的文章
必应学术
必应学术中相似的文章
[Xu Fang]的文章
[Lixiang Lian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。