Microservice Deployment in Space Computing Power Networks via Robust Reinforcement Learning
2025-01-08
状态已发表
摘要With the growing demand for Earth observation, it is important to provide reliable real-time remote sensing inference services to meet the low-latency requirements. The Space Computing Power Network (Space-CPN) offers a promising solution by providing onboard computing and extensive coverage capabilities for real-time inference. This paper presents a remote sensing artificial intelligence applications deployment framework designed for Low Earth Orbit satellite constellations to achieve real-time inference performance. The framework employs the microservice architecture, decomposing monolithic inference tasks into reusable, independent modules to address high latency and resource heterogeneity. This distributed approach enables optimized microservice deployment, minimizing resource utilization while meeting quality of service and functional requirements. We introduce Robust Optimization to the deployment problem to address data uncertainty. Additionally, we model the Robust Optimization problem as a Partially Observable Markov Decision Process and propose a robust reinforcement learning algorithm to handle the semi-infinite Quality of Service constraints. Our approach yields sub-optimal solutions that minimize accuracy loss while maintaining acceptable computational costs. Simulation results demonstrate the effectiveness of our framework.
关键词Space Computing Power Network LEO satellite constellation remote sensing microservice deployment robust optimization robust reinforcement learning
语种英语
DOIarXiv:2501.06244
相关网址查看原文
出处Arxiv
收录类别PPRN.PPRN
WOS记录号PPRN:120533202
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware& Architecture
文献类型预印本
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/496891
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
通讯作者Yu, Zhiyong
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.EPFL, Automatic Control Lab, CH-1015 Laussane, Switzerland
3.Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
推荐引用方式
GB/T 7714
Yu, Zhiyong,Jiang, Yuning,Liu, Xin,et al. Microservice Deployment in Space Computing Power Networks via Robust Reinforcement Learning. 2025.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yu, Zhiyong]的文章
[Jiang, Yuning]的文章
[Liu, Xin]的文章
百度学术
百度学术中相似的文章
[Yu, Zhiyong]的文章
[Jiang, Yuning]的文章
[Liu, Xin]的文章
必应学术
必应学术中相似的文章
[Yu, Zhiyong]的文章
[Jiang, Yuning]的文章
[Liu, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。