| |||||||
ShanghaiTech University Knowledge Management System
A bioinspired microbial taste chip with artificial intelligence-enabled high selectivity and ultra-short response time | |
2025-06-01 | |
发表期刊 | BIOSENSORS & BIOELECTRONICS (IF:10.7[JCR-2023],9.9[5-Year]) |
ISSN | 0956-5663 |
EISSN | 1873-4235 |
卷号 | 277 |
发表状态 | 已发表 |
DOI | 10.1016/j.bios.2025.117264 |
摘要 | Real-time water pollution monitoring is crucial as global water pollution has become an urgent issue endangering the health of humanity. Microbial taste chips are promising for water pollution monitoring due to the advantages of short response time and real-time monitoring capability. However, although more than 200 journal research articles on microbial taste chips have been reported to date, sensor selectivity, which is the foremost critical parameter, remains an unsolved challenge even after utilizing gene-editing techniques. In addition, the response time is long and takes at least 3 min. Herein, we report a breakthrough to solve the selectivity challenge by a bioinspired wireless microfluidic microbial taste chip with artificial-intelligence(AI)-enabled high selectivity. Utilizing gated recurrent unit(GRU)-based deep learning algorithms, we demonstrate a classification accuracy of 98.9% for Cu2+, Pb2+, and Cr6+ by harnessing the different temporal output current patterns of the chips to different pollutants. A shortest 48-s response time is achieved, 3.75 times shorter than the fastest previously reported counterpart. The chip enables real-time sensing of Cu2+, Pb2+, and Cr6+ with high accuracy and linearity. Combined with a small footprint and wireless connectivity, the chip may find applications in real-time quantitative heavy metal ions in water monitoring and contribute to global efforts in fighting water pollution. |
关键词 | Taste chip Sensor selectivity Microfluidics Artificial intelligence (AI) Gated recurrent unit (GRU) |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[ |
WOS研究方向 | Biophysics ; Biotechnology & Applied Microbiology ; Chemistry ; Electrochemistry ; Science & Technology - Other Topics |
WOS类目 | Biophysics ; Biotechnology & Applied Microbiology ; Chemistry, Analytical ; Electrochemistry ; Nanoscience & Nanotechnology |
WOS记录号 | WOS:001432197600001 |
出版者 | ELSEVIER ADVANCED TECHNOLOGY |
EI入藏号 | 20250817924737 |
EI主题词 | Microfluidics |
EI分类号 | 1401.4.1 Microfluidics - 1502.1.1.4.2 Water Pollution Control |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/496873 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_任豪组 |
通讯作者 | Ren, Hao |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.ShanghaiTech Univ, Shanghai Engn Res Ctr Energy Efficient & Custom AI, Shanghai 201210, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院; 上海科技大学 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Wang, Yining,Tang, Fengxiang,Liu, Boya,et al. A bioinspired microbial taste chip with artificial intelligence-enabled high selectivity and ultra-short response time[J]. BIOSENSORS & BIOELECTRONICS,2025,277. |
APA | Wang, Yining,Tang, Fengxiang,Liu, Boya,Wu, Yifan,Zhang, Ruohan,&Ren, Hao.(2025).A bioinspired microbial taste chip with artificial intelligence-enabled high selectivity and ultra-short response time.BIOSENSORS & BIOELECTRONICS,277. |
MLA | Wang, Yining,et al."A bioinspired microbial taste chip with artificial intelligence-enabled high selectivity and ultra-short response time".BIOSENSORS & BIOELECTRONICS 277(2025). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。